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ABSTRACT: In 1665 Isaac Newton wrote a notebook in which he collected materials 
for a musical treatise which was never completed. He investigated ways of 
approximately representing just intonation scales by dividing the octave into many 
equally sized intervals. Strictly speaking, equal divisions of the octave are incompatible 
with just intonation, and just intonation intervals are audibly different from the intervals 
played on a modern equally tempered modern piano. By increasing the number of parts 
of an equal division, just intonation can be approximated arbitrarily well. Scales with 
more than 60 microtonal steps per octave, however, never gained wide acceptance in 
music theory or practice. Newton divided the octave into 612 equal parts so that he could 
represent the syntonic chromatic scale very accurately and he studied several equal 
divisions of the octave with fewer parts. His approximation problem is looked at in three 
ways: (1) A reconstruction of how he determined the many EDO-representations listed 
in the notebook is given. (2) Using computer programs Newton’s tuning problem is 
solved “empirically” through calculating and evaluating the related approximations 
comprehensively. (3) The findings from the computer-assisted analysis are used to 
develop a more general geometric approach to the approximation problem.  
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ISAAC Newton (1643-1727) is known for his outstanding contributions to mathematics and physics. In the 
1660s he invented the mirror telescope and developed the basics of the theory of ray optics published in 
Opticks (1704). His early contributions to music theory are less known and were not published during his 
lifetime. A college notebook from 1665 contains the draft of a music theoretical treatise, which has been 
recently edited critically by Benjamin Wardhaugh [2]. Newton’s manuscript contains two circular diagrams 
which are inspired by Descartes’s Compendium Musicae (1650). Newton’s diagrams interpret and generalize 
Descartes’s just intonation hexachordal system through octave divisions into 53 and into 120 equal parts, see 
Figure 2. The idea to approach just intonation through 53-EDO [3] was brought about by Nicolaus Mercator 
at about the same time – also in manuscripts, see Wardhaugh (2013, pp. 129-236). Due to an early quotation 
by William Holder (1694/1730, pp. 79-80) Mercator’s treatment of the tuning problem is better known than 
Newton’s note book. Besides the mentioned divisions Newton considered several other equal division of the 
octave (EDOs) with respect to their capacity to approximate just intonation tunings. These EDOs are in the 
focus of this article. 

After a brief introduction into Pythagorean and just intonation tunings, I will give some remarks on 
the construction of syntonic chromatic scales in historical sources. The following close reading of Newton’s 
sketchy note book tries to clarify why he studied certain octave divisions and neglected others.  
In order to tackle Newton’s optimization problem with modern means, I calculated the closest approximation 
to Newton's syntonic chromatic scale for all equal divisions of the octave with up to 5000 microtonal steps 
per octave and analysed them in terms of least square deviations and consistency. This analysis helps to 
assess Newton’s selection of octave divisions systematically and it leads us to a general approach to the 
tuning problem and to an elegant description of the dependence of the best fits from the fineness of the 
approximating scales, i.e., their number of equal steps per octave. 

The use of least square deviations to assess the quality of best fit approximation problems is a 
mathematical standard with many applications in data analysis, especially in statistics and probability theory. 
In the 19th century it was applied to musical scales by Drobisch (1852, pp. 75-78) and more recently by James 
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M. Barbour (1951) and Johannes Barkowsky (2007, p. 105). Barbour’s approach, which takes 12-EDO as a 
reference scale to assess chromatic and enharmonic scales, was criticized by Donald Hall (1973).  

The approximation problem studied in this article is not of a genuinely stochastic nature, because 
the content of the datasets generated by computer programs are uniquely determined. Nevertheless, they 
appear to the eye as a kind of random data. The knowledge of three excellent n-EDO representations of the 
syntonic chromatic scale, 53-EDO, 118-EDO and 612-EDO, explains the quasi-chaotic dependence of the 
quality of best fit on n for values of n up to 1200 very well. In other words, for EDOs with unit steps not 
smaller than 1 cent, the discrete interval configuration of the just intonation scale and the approximating 
space are both three-dimensional. [4] Newton had accurate tables of (base 10) logarithms at his disposal and 
he used them to measure just intonation intervals with 12-EDO semitones, but he had no powerful computers 
and software. The “empirical” approach to Newton's approximation problem given here is in line with his 
selection of octave divisions and it reveals general properties of equal octave division and their capacity to 
simulate just intonation tuning by combining them linearly. 

 
JUST INTONATION: LIMIT-3 AND LIMIT-5 TUNING 

 
Pythagorean music theory is based on the idea that musical intervals can be described with ratios of small 
positive integers. In antiquity these ratios refer to string lengths on a monochord. [5] The diatonic genus and 
the related pitch systems of the Pythagoreans, as passed down to the Middle Ages and the Renaissance, can 
be defined by ratios of numbers which have only 2 and 3 in their prime number factorisations. In modern 
terminology and notation, the so-called “Pythagorean tuning” [6] is given by rational numbers of the format 
2𝑘𝑘 ⋅ 3𝑗𝑗 where k and j are integers (positive, zero or negative). The set of numbers 𝐿𝐿3: = {2𝑘𝑘 ⋅ 3𝑗𝑗|𝑘𝑘, 𝑗𝑗 ∈ ℤ} is 
a dense subset of the real numbers, which hereafter is called limit-3 tuning (system). Finite subsets of L3 can 
be used to define the Pythagorean intervals, chords and scales.  

Historical sources often describe pitch sets with multi-terms proportions of integers and visualize 
them on monochord drawings. In order to describe an octave periodic scale or chord, the first and last element 
of the related proportion are of the ratio 2 : 1. The Pythagorean proportion  

 
6 : 8 : 9 : 12 = (21 ⋅ 31)  :  (23 ⋅ 30)  :  (20 ⋅ 32)  :  (22 ⋅ 31), 

 
for example, serves as a reference frame for the Greek diatonic, chromatic and enharmonic genera. Pitch 
systems from the late Renaissance and later periods are usually strictly octave periodic. However, this is not 
necessarily the case in the Middle Ages and antiquity. [7] 

Syntonic tunings or limit-5 tunings are defined in the same way with the sole prime factors 2, 3 and 
5, and limit-7 tunings with the prime factors 2, 3, 5 and 7: 

 
𝐿𝐿5: = {2𝑘𝑘 ⋅ 3𝑗𝑗 ⋅ 5𝑖𝑖|𝑘𝑘, 𝑗𝑗, 𝑖𝑖 ∈ ℤ}, 𝐿𝐿7: = {2𝑘𝑘 ⋅ 3𝑗𝑗 ⋅ 5𝑖𝑖 ⋅ 7ℎ|𝑘𝑘, 𝑗𝑗, 𝑖𝑖, ℎ ∈ ℤ} 

 
Limit-5 tunings can be constructed by combining octaves (2 : 1), Pythagorean fifths (3 : 2) and (just) major 
thirds (5 : 4). [8] Limit-7 tunings also permit “just minor sevenths” (7 : 4), but normally without piling them, 
so that the value of the power index h in the formula for L7 equals -1, 0 or 1. Limit-7 tunings were suggested 
by several theorists from the 17th to the 20th century, among them Christiaan Huygens (c. 1661) and Quirinius 
van Blankenburg (1739), see Jedrzejewski (2018). Musicians referring to “just intonation” usually mean 
limit-5, but sometimes also limit-7 tuning. In this text we frequently use the term “syntonic scales” for subsets 
of L5. [9] 

Octaves, Pythagorean fifths and just major thirds are base vectors of a three dimensional “interval 
space” ℤ3 = {(𝑘𝑘, 𝑗𝑗, 𝑖𝑖)|𝑘𝑘, 𝑗𝑗, 𝑖𝑖 ∈ ℤ} defined by the power indices from L5. Because of the uniqueness of the prime 
factorization there is a natural embedding: 

 
ℤ3 = {(𝑘𝑘, 𝑗𝑗, 𝑖𝑖)|𝑘𝑘, 𝑗𝑗, 𝑖𝑖 ∈ ℤ} ≅ 𝐿𝐿5 ⊂ ℚ ⊂ ℝ 

 
Hereby, different points in ℤ3correspond to different frequency ratios and arbitrary irrational numbers can be 
approximated arbitrarily well through limit-5 ratios, which means that L5 is a dense subset of the real numbers 
ℝ.  
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Nicolas Mercator in the 17th century was probably the first to represent limit-5 tunings with two-
dimensional grids which abstract from the octave coordinate [10]. Jean-Philippe Rameau (1726), Leonhard 
Euler (1739) and others in the 18th century used the same technique to visualize scales and chords on a two-
dimensional lattice. The number triangles used by Boethius, Torkesey and their followers up to Robert Fludd 
in the early 17th century are precursors of two-dimensional pitch grids; however, they do not abstract from 
octave similarity. [11] Isaac Newton did not use grid notation in order to describe just intonation tunings, 
which possibly means that he did not know Mercator’s manuscripts when he studied EDOs. Newton favoured 
combinatorics and circular arrangements which he picked up from Descartes’ Compendium Musicae, see 
Figures 1b and 2a.  

 

 
   

Figure 1a. Mercator’s two-dimensional representation of 
the syntonic diatonic scale, together with the 
corresponding numbers composed of prime powers of 3 
and 5 below the horizontal line – neglecting the octave 
information (Mercator, MS MUS. 1187 fol. 11v, by 
permission of the Christ Church Library, London) 

Figure 1b. Newton describes syntonic scales 
through three kinds of semitones, the 
diatonic semitone a, the greater chromatic 
semitone b and the lesser chromatic 
semitone c, which he arranges on an octave 
circle (Newton 1665, fol. 110r). 

 
Incommensurable intervals: Euclid’s algorithm and continued fractions 
 
The mathematical reason for the quasi-chaotic appearance of the datasets discussed below is the mutual 
incommensurability of the logarithms of the primes 2, 3 and 5 (expressed in any common base, conveniently 
2). This incommensurability can be summarized with the following three formulas:  
 

(i) log2(3) ∈ ℝ\ 
(ii) log2(5) ∈ ℝ\ℚ   
(iii) log2(5) / log2(3) ∈ ℝ\ℚ   

 
Being irrational numbers, these expressions cannot be written as integer ratios (ordinary positive 

fractions). Translated into music theory the first formula (i) is equivalent to the incommensurability of the 
just fifth and the octave so that chains of Pythagorean fifths modulo octave generate scales with potentially 
infinitely many pitches per octave. The second formula (ii) means that major thirds of the ratio 5 : 4 are 
incommensurable to the octave in the same sense. And the third formula (iii) states that just major thirds and 
fifths are also mutually incommensurable in terms of musical interval size. The fact that intervals of 
superparticular ratios are mutually incommensurable has been known since antiquity. 

Historically, commensurability was tested with Euclid’s algorithm, which provides a method to 
distinguish rational from irrational ratios of quantities: Euclid’s algorithm terminates after finitely many 
iteration steps, if and only if the ratio of the quantities under consideration is rational. The Pythagoreans knew 
this fact and that the algorithm does not terminate if it is applied to the diagonal and the side of a regular 
pentagon. In other words, they proved that the so-called golden ratio is irrational [12]. The application of 
Euclid’s algorithm onto pairs of musical intervals viewed as continuous quantities (like distances on a straight 
line) produces their continued fraction expansion as a by-product. If this expansion is finite, the intervals 
under consideration are commensurable, otherwise they are incommensurable. In the Sectio canonis, 
assigned to Euclid, it is shown that any different intervals with superparticular frequency ratios (integer ratios 
of the form 𝑛𝑛+1

𝑛𝑛
) are mutually incommensurable. Boethius knew this result and discussed a proof by Archytas 

[13]. Whereas the continued fraction expansion of the golden ratio,√5+1
1

, is periodic with the simplest possible 
pattern [1, 1, 1, 1, …], the interval ratios related for pairs of superparticular frequency ratios have infinite 
continued fractions expansions which do not exhibit simple regular patterns. [14]  
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NEWTON’S CHROMATIC SCALES AND HIS VARIOUS OCTAVE DIVISIONS 

Descartes’s adaption of the hexachord system to just intonation and its reduction to octave classes, as well as 
Newton’s extension of Descartes’s approach, lead us to the problem of defining just-tuned diatonic and 
chromatic 12-note scales. Differently from the Pythagorean scales of the Middle Age, which offer only few 
alternatives, there was no consensus about the definition of a chromatic scale in just intonation in the 17th 
and 18th centuries. Various chromatic scales were proposed, which occupy different and incongruent regions 
in pitch grids for just intonation. [15].  

From syntonic hexachords to chromatic scales 

Guido of Arezzo’s Micrologus (c. 1025) constructs a tone system with seven overlapping hexachords “ut-re-
mi-fa-so-la”, each of them of the same symmetric interval structure T-T-s-T-T, a Pythagorean diatonic 
semitone s (256 : 243) flanked on both sides by pairs of major tones T (9 : 8). Guido of Arezzo placed these 
congruent hexachords at ut = Γ, C, F, G, c, f and g, so that his system comprises two octaves plus a major 
sixth [Γ, ee], where Γ, the lowest note of the system,  is one octave below G, and ee, the highest note of the 
system one octave above e. There is no B-flat in the lowest octave, but B-flat and B in the middle and upper 
octaves.  

The Pythagorean hexachord (PythHex) can be completed to octachords (PythOct), so that the octave 
is portioned into five tones and two diatonic semitones, see Table 1. For this purpose, the minor third (32 : 27) 
between the major sixth (27 : 16) and the octave, is divided into a Pythagorean semitone and a major tone, 
which results in two equivalent diatonic scales a Pythagorean fifth/fourth apart. Hence, the Pythagorean 
hexachord PythHex on C together with the transpositions by a fourth (4 : 3) and by a fifth (3 : 2) generate a 
limit-3 diatonic system of eight pitch classes, C-D-E-F-G-A-Bb-B, if the pitches are reduced to one octave. 
The pitches can be arranged as a stack of fourths B-E-A-D-G-C-F-Bb with the chromatic semitone Bb-B of 
the ratio 2187 : 2048, which is approximately 25% larger than the diatonic semitones E-F and Bb-B of the 
ratio 256 : 243. 

Table 1. Pythagorean hexachords and octachords related to Guido of Arezzo’s tone system. 

Pythagorean hexachord Pythagorean octachords 

Interval structure T-T-s-T-T    T-T-s-T-T-s-T 
  T-T-s-T-T-T-s  

Ratio structure 

Note: The two octachords are cyclic permutations of the same interval pattern. They define the same 
diatonic scale. 

Guido’s system was quoted time and again through the late Middle Ages and Renaissance up to the 
Templum musicae (1618/24) by Robert Fludd (1618/24, p. 161) published immediately before René 
Descartes (1596-1650) composed the Compendium musicae dedicated to Isaac Beeckman (1619). The 
Compendium written 1618, the earliest complete treatise by Descartes, circulated in at least four manuscript 
copies during his lifetime, only 1650 immediately after his death it appeared in two Latin prints and three 
years later afterwards in an English edition (1653). Descartes’s manuscript is lost. [16] One of the four 
circular pitch diagrams contained in the Compendium Descartes gives a system of three structurally identical 
hexachords “ut-re-mi-fa-so-la” (mollis, naturalis and duris), whose references are Pythagorean fifths apart as 
in Guido’s system, but whose symmetric interval configuration t-T-S-T-t is composed of superparticular 
limit-5 ratios with major tones T (9 : 8), minor tones t (10 : 9) and diatonic semitones S (16 : 15) in place of 
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Guido’s limit-3 intervals. Descartes’s syntonic hexachord and its completions to octachords are shown in 
Table 2. 

Table 2. Syntonic hexachords and octachords. 

Symmetric syntonic hexachord Syntonic octachords 

Interval structure t-T-S-T-t t-T-S-T-t-S-T
t-T-S-T-t-T-S

Ratio structure 

Note: The two ways of dividing the minor third between the sixth scale degree and the octave lead to two 
incongruent diatonic scales, in which the order of the major and minor tones between the respective tonics 
and their third scale degrees are reversed. Newton looked at both types of diatonic extensions, see Figures 
2c/d. 

Descartes’ re-interpretation of Guido of Arezzo’s Pythagorean hexachords results in a diatonic just 
intonation system with both varieties of B (B-duris and B-mollis) and two ambiguous pitches D and G, see 
Figure 1a. Just intonation as well as meantone temperaments were investigated and widely debated in the 
16th century by Fogliano (1529), Gioseffo Zarlino (1558/62, 1588), Francisco Salinas (1577) and Vincenzo 
Galilei (1581). Just intonation was usually justified by the consonance of the major thirds and by referring to 
Ptolemy’s superparticular tetrachord divisions. 

The use of concentric rings to visualize hexachordal tone systems has a very early forerunner in 
Theinred of Dover (Ms. Bodley 842, mid-twelfth or early fourteenth century), where four hexachords are 
represented on a circle that closes after two octaves, see Figure 2b [17] Theinred’s visualization was probably 
not known to Descartes, and almost certainly not to Newton. Descartes, however, was at least superficially 
familiar with Zarlino’s theories from his college education at Flèche [18]. Zarlino’s Sopplimenti musicali 
contain a diagram, which could have been a source of inspiration for one of Descartes’s circular pitch 
diagrams, Zarlino (1588, Libro Ottavo p. 296). Newton in 1665 certainly knew either the English or more 
likely the Latin edition of Descartes’s Compendium musicae, when he investigated musical scales.  

Newton’s constructions shown in Figures 2c and 2d hold five seven-note scales (ut-re-mi-fa-sol-la-
fa) instead of the three Cartesian hexachords (ut-re-mi-fa-sol-la) with ut = F-C-G-D-A and four ambiguous 
notes D, A, E and B. The hexachords of Figure 2c are equal to Descartes’s (t-T-S-T-t) whereas in Figure 2d 
they are of the format T-t-S-T-t with a major tone T between ut and re. The numbers around the circle refer 
to 53-EDO and in Figure 2d also to 120-EDO (semitones to 1 d.p.). The seventh grades fa, the minor sevenths 
with respect to ut, are indicated but not labeled in Figure 2c. Together Newton’s five seven-note scales cover 
eleven out of twelve chromatic pitches (without G♯/Ab).  
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Figure 2a. Descartes’ just intonation hexachords 
(ut-re-mi-fa-sol-la) with ut = F, C and G result in 
two ambiguous notes, G and D, differing by 
syntonic commas (324 : 320= 80 : 81 = 
486 : 480). (Descartes 1650, 35) 
 

 
Figure 2b. Theinred of Dover’s hexachords on a 
two-octave circle with four hexachords on ut = Bb, 
F, C, G together with an interpretation in terms of a 
12 semitone note frame without F♯. The tuning is 
not specified, so that the diagram is compatible with 
Pythagorean as well as 12-EDO tuning, depending 
on the interpretation of the Tonus and Semitonium. 
(MS. Bodley 842, fol. 80v) 
 

 
Figure 2c. 

 
Figure 2d. 

 
Figures 2c/2d. Newton’s generalization of Descartes’s hexachords (Newton 1665, fol. 110r, fol. 109r, MS 
Add. 4000: Reproduced by kind permission of the Syndics of Cambridge University Library). 
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Syntonic chromatic scales with 12 pitches per octave 
 
In his college notebook, Newton expressed the sizes of the syntonic intervals by 12-tempered semitones with 
an accuracy of 0.0001 cent (see Figure 8) [19]. There are various ways to select the pitches of a 12-note 
chromatic scale within L5. The pitch sets from the Figures 2c and 2d are inconsistent with Figures 3 and 8, 
because the transpositions of the syntonic hexachord/scale by multiples of Pythagorean fifths generate 
configurations which are contained in two rows of fifths instead of three rows as in Figure 3. 

Whereas Pythagorean chromatic scales have only two kinds of semitones, syntonic chromatic scales 
are composed of three or four differently sized semitones (see Figures 4 and 5). Newton’s chromatic scale is 
equivalent to a scale proposed by Marin Mersenne (1636), and it has three kinds of semitones: seven diatonic 
semitones a of the ratio 16 : 15, three greater chromatic semitones b of the ratio 135 : 128 and two lesser 
chromatic semitones c of the ratio 25 : 24, producing the semitone pattern “a-b-a-c-a-b-a-a-c-a-b-a” with 
reference G, see Figures 3a/3b. It also contains a Pythagorean third F-A (81 : 64) defined through four 
Pythagorean fifths [20] so that the major triad F-A-C has a “mistuned” third compared with the perfect major 
triads on C, G and D of the G major scale. Holder’s scale has five lesser chromatic semitones (25 : 24) but 
no greater chromatic semitones. Whereas the scales by Newton and Holder have only three different 
semitones, the solutions by Mercator and Euler require all four different semitones shown in Fig. 4. Euler’s 
selection is equivalent to a configuration proposed by Athanasius Kircher (1650), and Newton’s selection to 
a configuration by Marin Mersenne (1636). The earliest syntonic scale over three generations of fifths with 
precisely 12 pitch classes is by Kepler (1619). [21] 

 
 

 
Figure 3a. Newton’s syntonic chromatic 
scale in a rectangular pitch grid as a closed 
vector path. The notes (pitch classes) of 
the C-major scale are highlighted. The G-
major scale is congruent with the standard 
diatonic major scale as described by 
Mercator, see Figure 1a. 

 
Figure 3b. The three kinds of semitones, a, b and c, of 
Newton’s chromatic scale together with their frequency 
ratios. The vector b + a forms a major tone of the ratio 
9 : 8, and c + a forms a minor tone of the ratio 10 : 9, see 
also Figure 1b. 
 

 
 
 

 

16:15 27:25 

135:128 

25:24 

128:125 

128:125 

81:80 

81:80 

   
   
   
   
   

 
Figure 4. Vector representations of the four kinds of semitones occurring in limit-5 tunings. The lesser and 
greater chromatic semitones, as well as the ordinary and large diatonic semitones, differ by syntonic 
commas; the lesser chromatic and ordinary diatonic semitones, as well as the greater chromatic and large 
diatonic semitones, differ by enharmonic changes or major diesis (128 : 125) – an octave minus three just 
major thirds.  
 

b  a 
c a diatonic 

b: greater chromatic      semitone 
c: lesser chromatic 
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Figure 5. Grid representations of four different syntonic chromatic scales from historical sources. The large 
diatonic semitones 27 : 25 in the scales by Mercator (c. 1660), Holder (1694) and Euler (1739) are 
highlighted. 
 
612-EDO 
 
In his notebook, Newton examined the divisions of the octave into 15, 19, 20, 24, 25, 29, 36, 41, 51, 53, 59, 
100, 120 and 612 equal parts in order to approximate the syntonic chromatic scale, see Figures 9a to 9d. How 
did he arrive at this particular selection of octave divisions, and how accurate are they? The most striking 
number is certainly 612, which results in a microtonal unit of little less than 2 cent. If a sound of 440 Hz [22] 
is increased by this tiny interval, its frequency increases by 0.5 Hz only. The algebraic key to this specific 
division of the octave can be found in Figure 6a. 
 

 
Figure 6a. The curves in the central part analyze all the intervals of the chromatic scale, whether they are 
greater or smaller than the corresponding intervals with respect to G. Newton (1665, 108r) [23]. 
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Figure 6b. Transcription of the note names and numbers from Figure 6a. 
 

The “numbers” in Figure 6a/6b indicate sizes of the syntonic intervals with respect to G in terms of 
12-EDO semitones plus/minus unit fractions of 12-EDO whole tones. The fractions not highlighted red or 
blue in the transcription permit the calculation of the 612-EDO representation of the pitch set G-Ab-A-C-D-
F-F♯-G containing optimum approximations of the Pythagorean sequence F-C-G-D-A as well as perfect 
minor and major triads F-Ab-C and D-F♯-A (spanning three rows of fifths), so that the overall quality of the 
approximation within the region of Newton’s scale is made sure. Comparing the factorizations of the 
neighbored numbers 612, 615 and 611 with the denominators in Figure 6b (612 = 12 · 51 = 36 · 17 , 615 = 
41 · 15 and 611 = 47 · 13) helps to understand why Newton preferred 612-EDO having a Pythagorean comma 
equivalent of 12 units, see also Appendix_1 (http://hdl.handle.net/1811/92832). The three groups of pitches 
defined by the denominators in Figure 6b are highlighted in Figure 7 with the same colors. The denominators 
are symmetrically arranged about the tritonus/diminished fifth in the middle between C and D. The 
denominator 41 makes Newton’s scale slightly asymmetrical. The number 6 instead of 6− 1

41
 would have 

meant perfect symmetry, but tritonus and diminished fifth cannot be equal in just intonation. [24] Making 
Newton’s chromatic scale mirror symmetric in limit-5 tuning would require two different pitches C♯ and Db 
(6 ± 1

41
), i.e., 13 pitches per octave. Newton addresses this point by giving two opposite scales in Figure 6a. 

 
Figure 7. The 612-EDO pitches of the notes described in Figures 6a/b correspond to pitches on and within 
the parallelogram F-Ab-A-F♯. The pitches Db, Eb, G, B, C♯ fit to 615-EDO. 
 

The intervals of Newton’s chromatic scale in 612-EDO are shown in Table 3. Among the equal 
divisions of the octave looked at by Newton the division into 612 parts provides the most accurate 
approximation of the chromatic scale, not primarily because 612-EDO has the largest number of parts, but 
because the deviations of the best fit measured in unit intervals are the smallest. For example, 720-EDO is 
less accurate than 612-EDO, although it has a smaller unit interval [25]. 

 
Table 3. Approximation of the syntonic chromatic scale in 612-EDO. 
 

G Ab A Bb B C C♯ D Eb E F F♯ G 
0 57 104 161 197 254 301 358 415 451 508 555 612 
0 56.983 103.994 160.977 197.020 254.003 301.014 357.997 414.980 451.023 508.006 555.017 612 

Note: The deviations to the decimal values (3 d.p.) in the last row, as calculated with logarithms, have a 
maximum of only 0.023 for Bb and E. 
 

Since Newton measured the deviations in unit fractions of 6-EDO units (whole tones) the 
denominators of the obtained rationalizations are necessarily multiples of 6. Newton searched for good 
approximations with fewer parts than 612, and he probably wanted to make them independent of the 12 
equally spaced semitones, which he used to measure the syntonic chromatic scale. He could achieve this by 
examining equal divisions of the octave with unit intervals which are multiples of the unit of 612-EDO like 

http://hdl.handle.net/1811/92832
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306-EDO, 204-EDO or 51-EDO determined by the divisors of 612. The 51-EDO unit is in the range of the 
pitch resolution of the human ear for pairs of successive tones and about the size of the Pythagorean comma. 
Newton’s numbers for the chromatic scale in 51-EDO are on top of his list, shown in Figure 9b. 
 

  
Figure 8. Newton gives base 10 logarithms of the
intervals of the syntonic chromatic scale (3rd column). 
The last number column expresses these intervals as
multiples of 12-tempered semitones with an accuracy of 
0.0001 cent. Newton (1665, 105v) 

 

 

 

Figure 9a. The intervals of the syntonic 
chromatic scale approximated by multiples of 
unit intervals, which result from various 
divisions of the octave into equal parts. 
Newton (1665, 108v) 

 

 

 
 
 
 

W  

 
 

Figure 9b. It is unclear how the almost regular 
pattern in the fourth row from the bottom  
(0  4  2  6  1  5  3  7  11  6  10  8  12) is related to the 
divisions of the octave. Newton (1665, 108r) 

Figure 9c. Above: Two versions of 
120-EDO with semitones of the sizes 
11, 9, 8 resp. 12, 8, 6 units, the latter 
are equivalent to 6, 4, 3 in 60-EDO. 
Newton (1665, 106r). Below: A 24-
EDO representation with a lesser 
chromatic semitone of size 0. 
Newton (1665, 108r). 
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Why at all should one study tone systems with so many pitches per octave, if the smallest steps are 
imperceptibly small? From the end of the 15th century to the early 20th century many different limit-5 
chromatic and enharmonic systems with up to 53 pitches per octave have been proposed. Among the 
enharmonic scales given by Athanasius Kircher (1650) there is a scale with 38 pitches per octave, and Arthur 
von Oettingen (1917) depicts a selection of 53 limit-5 pitches. One reason for the study of fine grained 
“enharmonic” syntonic scales in the 16th century was the wish to represent the Greek enharmonic tetrachords 
with their “quarter tones” in limit-5, see Zarlino (1562, 162) [26]. 

The analysis of the intervals in historical enharmonic scales with 22 or more pitch classes shows 
that they are much better represented in 118-EDO than in 53-EDO. Since 612-EDO is the coarsest tuning 
that accounts accurately and consistently for two differently sized commas – the Pythagorean and the syntonic 
with 12 and 11 units – it is the best base to study tunings which correspond to large coherent regions of the 
syntonic pitch grid. If the distinction between the Pythagorean and syntonic commas is irrelevant, 53-EDO 
with “Mercator comma”-units turns out to be the most convenient finite tuning for Pythagorean and syntonic 
scales. And two successive sounds distant by a Mercator comma are perceptibly different in pitch.To put it 
differently, whereas look-up tables for exponential functions and logarithms used in astronomy have many 
thousand entries to cover the range between 1 and 10, musical look-up tables require only 53, 118 or 612 
entries to enable their user to calculate the ratios of arbitrary limit 5-intervals within an octave with high 
precision. Jost Bürgi’s exponential table (Bürgi 1620) has the base 1.0001 = 101/23027.002... = 21/6931.818... 
so that it requires 6,932 entries to cover the range between 1 and 2 of a musical octave. Newton needed only 
the values of 12 base 10 logarithms, when he determined the optimum bases for musical logarithms and he 
did not even need numerical values for their bases, 2

1
53 ≈ 1.01316 and 2

1
612 ≈ 1.00113. 

With similar intentions Aristoxenous divided the whole tone into sixty parts in order to compare the 
many varieties of the Greek diatonic, chromatic and enharmonic tetrachords suggested by different authors. 
The corresponding meta-system is 360-EDO, if the tone is interpreted as the sixth part of an octave as 
Vincenzo Galilei assumed (Galilei 1581, 58), so that historically Newton is not completely isolated with his 
fine-grained division of the octave.  
 
51-EDO and 53-EDO 
 
From the 612-EDO representation of the chromatic scale Newton could determine with fewer parts without 
extensive calculations. Taking the accuracy of 612-EDO for granted, it can be used to find coarser good equal 
divisions of the octave by proportionally reducing the 612-EDO representations. It follows from the previous 
paragraph that the irrational number 21/612, the frequency ratio of the 612-EDO unit, can serve as the common 
ratio of a geometric series which approximates Newton’s syntonic scale more accurately than any other equal 
division of the octave [27]. An idea for the varying quality of the approximations can be obtained by 
comparing the decimal parts of the numbers in the bottom row of Table 1 with the corresponding decimal 
parts in the bottom lines (labeled ‘direct’) of the following Tables 4 and 5 [28]. 

For finding the interval sizes of the 51-EDO scale one is tempted to divide the numbers in the 612-
EDO scale by 12 and round the results to the next integer, see the rows labeled “Newton” and “../12” in Table 
4. Thereby, a simple rescaling is performed in order to calculate the pitches in 51-EDO from the 612-EDO 
pitches.  

Newton’s values for 51-EDO differ at two places from these rescaled values. This is not to be 
considered a mistake, since with Newton’s values all the diatonic semitones (G-Ab, A-Bb, B-C, C♯-D, D-
Eb, E-F, F♯-G) measure 5 units, the greater chromatic semitones (Ab-A, C-C♯, F-F♯) measure 4 and the 
lesser chromatic semitones (Bb-B, Eb-E) measure 2 units each. In other words, the two adjustments create a 
consistent scale, in which equal syntonic intervals are rendered with equal numbers of 51-EDO units: 7 ⋅ 5 +
3 ⋅ 4 + 2 ⋅ 2 = 51.  

The major tones in Newton’s 51-EDO scale measure 9 units so that six of them are 3 units larger 
than an octave. This difference, the 51-EDO equivalent of the Pythagorean comma, is three times as big as 
the Pythagorean comma [29], so that Newton’s 51-EDO representation must be considered a very weak 
approximation to the syntonic chromatic scale. 
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Table 4. Comparison of Newton’s 612-EDO and 51-EDO chromatic scales.  
 

 G Ab A Bb B C C♯ D Eb E F F♯ G 
Newton 0 57 104 161 197 254 301 358 415 451 508 555 612 
../12 0 4.8 8.7 13.4 16.4 21.2 25.1 29.8 34.6 37.6 42.3 46.3 51 
rounded 0 5 9 13 16 21 25 30 35 38 42 46 51 
Newton 0 5 9 14 16 21 25 30 35 37 42 46 51 
direct 0 4.75 8.67 13.42 16.42 21.17 25.09 29.83 34.58 37.58 42.33 46.25 51 

Note: The pitch reference is G = 0 so that the size of the octave is either 612 or 51 units. Newton’s 51-EDO 
representation differs at two places from simple rescaling. The last row in this table shows that rescaling 
from 612-EDO and direct logarithmic calculation result in the same integer approximations. 
 

If instead only the 612-EDO sizes of the three semitones 57, 47, 36 are divided by 12 and rounded 
to the next integer, �57

12
, 47
12

, 36
12
� ≈ (4.8,3.9,3) ≈ (5,4,3), the division of the octave into 53 equal parts is 

obtained in a natural way because of 7 ⋅ 5 + 3 ⋅ 4 + 2 ⋅ 3 = 53 = 6 ⋅ 9− 1. In this partition of the octave 
both the syntonic and the Pythagorean comma measure one unit. The 53-EDO values of the chromatic scale 
can also be determined correctly by rescaling the 612-EDO values with 53

612
 and rounding the results to the 

closest integer, see Table 5. The last row of the same table confirms that proportional rescaling gives the 
same numbers as the direct logarithmic computation. Furthermore, the maximum deviation in the best fit for 
53-EDO is only 0.068 units (compared with 0.418 in 51-EDO). 

 
Table 5. Derivation of 53-EDO from 612-EDO by rescaling as in Table 2. 
 

 G Ab A Bb B C C♯ D Eb E F F♯ G 
Newton 0 57 104 161 197 254 301 358 415 451 508 555 612 
..*(53/612) 0 4.9 9.0 13.9 17.1 22.0 26.1 31.0 35.9 39.1 44 48.1 53 
Newton 0 5 9 14 17 22 26 31 36 39 44 48 53 
direct 0 4.93 9.01 13.94 17.06 21.997 26.07 31.003 35.94 39.06 43.99 48.07 53 

 
41-EDO and 29-EDO 
 
The representation of the chromatic scale in 41-EDO and 29-EDO can be directly obtained from the values 
of 53-EDO by reducing the semitone sizes evenly, see Table 6. The last row shows that the same procedure 
cannot be continued down to 17-EDO, since the related lesser chromatic semitones would have size zero.  
 
Table 6. Arithmetic derivation of the values for 41-EDO and 29-EDO from 53-EDO. 
 

 G Ab A Bb B C C♯ D Eb E F F♯ G 
53-EDO 0 5 9 14 17 22 26 31 36 39 44 48 53 

 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 
41-EDO 0 4 7 11 13 17 20 24 28 30 34 37 41 

 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 
29-EDO 0 3 5 8 9 12 14 17 20 21 24 26 29 

 -0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 
17-EDO 0 2 3 5 5 7 8 10 12 12 14 15 17 

Note: The semitone size numbers of 53-EDO are reduced by 1 or 2 units to obtain their values in 41-EDO 
and 29-EDO. A like reduction by 3 units to obtain 17-EDO would result in chromatic semitones Bb-B and 
Eb-E of size 0. 
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This shows that there is no consistent scale with less than 29 units which distinguishes between the three 
kinds of semitones and preserves their natural order (25

24
< 135

128
< 16

15
) at the same time. Newton did not consider 

65-EDO, 77-EDO and 89-EDO, although they can be derived from 53-EDO in the same way as 41-EDO and 
29-EDO, probably because they divide the octave into more parts and give less accurate approximations than 
53-EDO. 
 
Overview and classification of Newton’s EDOs 
 
The results of my analysis of the remaining scales studied by Newton are summarized in the following. 
Newton examined only divisions of the octave which assign fixed sizes to the three different semitones. Their 
sizes and the resulting minor and major tones are listed in Table 7. 
 
Table 7. The sizes of the semitones and tones in Newton’s various equal divisions of the octave.  
 

n-EDO 612 51 53 41 29 36 60 120 120 100 100 25 20 15 19 24 
25 : 24 (c) 36 2 3 2 1 1 3 6 8 3 1 1 2 -1 3 0 

135 : 128 (b) 47 4 4 3 2 2 4 8 9 8 7 3 3 1 2 1 
16 : 15 (a) 57 5 5 4 3 4 6 12 11 10 11 2 1 2 1 3 
10 : 9 (t) 93 7 8 6 4 5 9 18 19 13 12 3 3 1 4 3 
9 : 8 (T) 104 9 9 7 5 6 10 20 20 18 18 5 4 3 3 4 

Note: The numbers highlighted in the EDOs with n = 25 or less indicate inconsistencies within the syntonic 
scale to be approximated. 
 
Newton’s 17 different EDOs can be classified as follows: 
 

• 612, 51, 53, 41, 29: derivation from 612-EDO and 53-EDO 
• 59: optimization of the major third or indirect derivation from 120-EDO or 53-EDO 
• 24, 36, 60, 120: refinement of 12-EDO / 120: decimal division of the 12-EDO semitone 
• 100, 25, 20: decimal division of the octave 
• 15, 19, 20, 24, 25: small numbers (relative semitone sizes not respected) 

 
Only, 29-EDO, 41-EDO, 53-EDO and 612-EDO, agree fully with the isolated rounding, which shows 

that Newton must have determined the representations of the scale by assigning fixed sizes to three 
independent intervals, e.g., to the three different semitones – at various places in the notebook he used the 
abbreviations a, b and c for the three semitones and r, s, t for the major tone, the minor tone and the diatonic 
semitone. Also, the latter three intervals determine the corresponding approximation completely. 

Newton did not consider the division into 118 equal parts, which is the closest approximation of his 
syntonic chromatic scale for octave division between 53-EDO and 612-EDO. He could have found this 
division, if he had investigated the rejected divisions into 59 parts or the division into 120 parts in greater 
detail. And he did not consider the accurate and consistent divisions into 65 (= 53 + 1 ⋅ 12), 77 (= 53 + 2 ⋅ 12) 
and 89 (= 53 + 3 ⋅ 12) parts, perhaps because they use more parts than 53-EDO and are less accurate.  

Without logarithms the divisions into 53 equal parts can be found by comparing the Pythagorean 
comma to the Pythagorean semitone, which are nearly in the size ratio 1 : 4. This approximate ratio was 
known by Boethius (1867, 293-295: Inst. Mus. III, 14) so that the whole tone, consisting of two Pythagorean 
semitones (“limmae”) and a Pythagorean comma gives 9 units, and the octave – six tones minus a comma – 
measures6 ⋅ 9 − 1 = 53 units, with a unit interval close to the Pythagorean comma. In fact, the octave 
measures 55.8 syntonic commas or 51.15 Pythagorean commas, so that Mercator’s “artificial comma” is a 
good average between the two commas, being only marginally greater in magnitude (.475) than the true 
average’.This explains the accurate Pythagorean and syntonic intervals in 53-EDO. 

The division of the octave into 53 equal parts was studied by Nicolaus Mercator at about the same 
time as Newton or even earlier [30]. As Benjamin Wardhaugh (personal communication, 2020) points out, it 
is not very likely that the two men exchanged ideas about tuning, since Newton at this time was still a student 
with no public profile. We do not know whether Newton, at the age of 22, was familiar with the 
aforementioned comparison of the Pythagorean comma to the semitone by Boethius [31]. 
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COMPUTATIONAL ANALYSIS OF ARBITRARY EDO-APPROXIMATIONS 
 

For the computer assisted analysis described in this section, I have created small Java programs with 
Processing. They generated lists of scales and key figures which I examined with spread sheets. One of these 
programs determined and analyzed the n-EDO approximations of limit-5 diatonic and chromatic scales for n 
< 2000, see Appendix_2 (http://hdl.handle.net/1811/92832). This analysis of the least square deviations can 
be related to Newton’s octave divisions. 

For this purpose, the diatonic and chromatic scales of just intonation are expressed with ratios to the 
reference notes C resp. G as follows. The syntonic diatonic scale (limit-5 diatonic scale) has two alternative 
pitches for the second degree D, so that both the major tone and the minor tone above the key C are present: 

 
C D D E F G A B C

1
10
9

9
8

5
4

4
3

3
2

5
3

15
8

2 
 
The two varieties of D differ by a syntonic comma c (81 : 80). This selection is in accordance with 

Descartes’s definition of the diatonic scale, with the symmetric pattern t-c-t-S-T-t-T-S with which Newton 
was familiar. The (syntonic) chromatic scale is taken from Newton’s notebook (Figure 8) and defined by: 

 
G Ab A Bb B C C# D Eb E F F# G

1
16
15

9
8

6
5

5
4

4
3

45
32

3
2

8
5

5
3

16
9

15
8

2 

 
For a given value of n (i.e., for the division of the octave into n equal intervals), the program 

calculates the sizes of all the intervals 𝑝𝑝
𝑞𝑞
 with respect to the reference note (C resp. G) with the formula 𝑛𝑛 ⋅

𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝
𝑞𝑞
 and rounds them to the next integer. In the following this procedure is called isolated (logarithmic) 

rounding, if all the intervals of the diatonic or chromatic scale are determined in this way, see Appendix_3 
(http://hdl.handle.net/1811/92832). 
The column headed dev in the Tables 8 and 9 contain the root mean square (rms) deviations of 𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑝𝑝𝑞𝑞 from 
the rounded values. This deviation is thus expressed in units of the corresponding n-EDO approximation. 
The last column dev_c contains the rms-deviation expressed in cent. The cent values naturally converge 
against 0 for increasing values of n, whereas the deviations with respect to the size of the unit intervals do 
not. In the following the latter is simply called deviation, if the context is clear, and the root mean square 
deviation measured in cent, is called cent-deviation.  
 
Table 8. Syntonic diatonic scale. 
 
n C D D E F G A B C dev dev_c 
12 0 2 2 4 5 7 9 11 12 0.1135 11.35 
53 0 8 9 17 22 31 39 48 53 0.0460 1.04 
118 0 18 20 38 49 69 87 107 118 0.0373 0.38 
559 0 85 95 180 232 327 412 507 559 0.0306 0.07 
612 0 93 104 197 254 358 451 555 612 0.0166 0.03 
1783 0 271 303 574 740 1043 1314 1617 1783 0.0152 0.01 
2513 0 382 427 809 1043 1470 1852 2279 2513 0.0134 0.006 
4296 0 653 730 1383 1783 2513 3166 3896 4296 0.0030 0.0008 

 
Note: The values in column dev form a monotonically decreasing sequence if indexed by n. There is no 
longer subset of indices n from 12 to 5000 with this property.  
 
 
 
 
 
 

http://hdl.handle.net/1811/92832
http://hdl.handle.net/1811/92832
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Table 9. Results from optimizing the full syntonic chromatic scale. 
 

n G Ab A Bb B C C♯ D Eb E F F♯ G dev dev_c 
12 0 1 2 3 4 5 6 7 8 9 10 11 12 0.1076 10.76 
53 0 5 9 14 17 22 26 31 36 39 44 48 53 0.0504 1.14 

118 0 11 20 31 38 49 58 69 80 87 98 107 118 0.0325 0.33 
612 0 57 104 161 197 254 301 358 415 451 508 555 612 0.0157 0.03 
1783 0 166 303 469 574 740 877 1043 1209 1314 1480 1617 1783 0.0156 0.01 
2513 0 234 427 661 809 1043 1236 1470 1704 1852 2086 2279 2513 0.0151 0.007 
3684 0 343 626 969 1186 1529 1812 2155 2498 2715 3058 3341 3684 0.0134 0.004 
4296 0 400 730 1130 1383 1783 2113 2513 2913 3166 3566 3896 4296 0.0024 0.0007 

                
559 0 52 95 147 180 232 275 327 379 412 464 507 559 0.0358 0.08 

Note: The record n = 559 at the bottom is found by the optimization of the diatonic scale (Table 8), but not 
in the optimization of the chromatic scale (Table 9). 
 
The Tables 8 and 9 list optimal approximations with respect to the rms-deviation (dev) in the following sense. 
For all integers k less than n the deviation in k-EDO is greater than the deviation in n-EDO. For example, the 
smallest number for which the deviations of the chromatic and the diatonic scale are smaller than the 
deviations for 12 is 53. And between 53-EDO and 118-EDO there is no equal division k-EDO with a deviation 
smaller than the deviation for 53-EDO. This procedure produces maximal monotonically decreasing 
sequences of deviations. 

The rankings created by this optimization algorithm are very similar across all sets of syntonic 
pitches tested, which comprised the full chromatic and diatonic scales, the major triad and the combination 
of the diatonic semitone with the major and minor tones [32]. This is not totally unexpected, since the syntonic 
system (limit-5 tuning) is generated by Pythagorean fifths and syntonic major thirds (modulo octave). The 
deviations for the diatonic scale, the chromatic scale as well as major thirds and fifths (the perfect major 
triad) for n = 12 to 133 are visualized in Figure 10. 

 
Figure 10. The rms-deviations of the diatonic scale, the chromatic scale and major triads (major thirds and 
fifths) for n = 12 to 133 exhibit similar patterns. The minima for n = 12, 53 and 118 are highlighted with 
small circles. Notice that pronounced minima also occur at n = 53 ± 12 and at n = 118 ± 12.  
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Log-compatibility and consistency 
 
Newton’s syntonic chromatic scale has three different semitones, the diatonic semitone (16 : 15 of 111.73 
cent), the greater chromatic semitone (135 : 128 of 92.18 cent) and the lesser chromatic semitone (25 : 24 of 
70.67 cent). His scale with reference note G has seven diatonic semitones a, three greater chromatic semitones 
b and two lesser chromatic semitones c, and the octave is filled by the semitone-pattern a-b-a-c-a-b-a-a-c-a-
b-a [33]. 

In the following, a chromatic n-EDO scale is called consistent, if the semitones of the same kind are 
rendered as equal intervals, and it is called strongly consistent, if it is consistent and the condition 2c > a > b 
> c is satisfied, so that the relative size order of the three semitones is respected and the lesser chromatic 
semitone c is greater than half a diatonic semitone a [34]. Scales agreeing with the directly rounded 
logarithms are called log-compatible. The smallest positive integers (a, b, c) with 2c > a > b are (5, 4, 3). 
With these values for a, b and c the 7 diatonic, the 3 greater and the 2 lesser chromatic semitones add up to 
an octave of 53 units (53 = 7 ⋅ 5 + 3 ⋅ 4 + 2 ⋅ 3). Since the isolated roundings of Newton’s syntonic 
chromatic scale agree with the consistent 53-EDO representation, 53-EDO provides the coarsest strongly 
consistent and log-compatible chromatic scale. 

In order to classify the chromatic scales for n up to 1200 “consistency levels” as defined in Table 
10 are used. Hereby, level 0 is equivalent with strong consistency. These definitions quantify the similarity 
of interval size relationships between the approximating EDO-scales and Newton’s syntonic chromatic scale. 
The restrictions become gradually weaker for increasing consistency levels. True syntonic chromatic scales 
would have consistency level 0, their approximation through 12-EDO have consistency level 3, because 12-
EDO does not distinguish between different semitones and has a = b = c. 

 
Table 10. Definition of consistency levels for n-EDO scales. 
 

cns-level condition 
0  
1  and 2𝑐𝑐 ≤ 𝑎𝑎 
2  
3  
4 Not  

Note: The variables a, b and c are the sizes of the diatonic, the greater chromatic and the lesser chromatic 
semitones.  
 

For 𝑛𝑛 ≤ 1200 there are 374 divisions of the octave into n equal intervals with log-compatible 
chromatic scales. The lowest deviations for scales with consistency levels > 0 occurs at 12-EDO [35], 34-
EDO and 41-EDO. The maximum deviation occurs at 306-EDO (306 = 1

2
⋅ 612). 53-EDO and 65-EDO are 

the only divisions of the octave into less than 100 equal parts with a relative deviation lower than that of 12-
EDO.  
 

53, 118 AND 612 – A GENERATOR SYSTEM AND ITS GEOMETRIC 
INTERPRETATION 

 
A close inspection of the numbers n with small deviations between the best EDO fit and the syntonic 
chromatic scale reveals that they are in a close relationship to 612, 118 and 53, the numbers with the smallest 
relative deviations. The deviations for 53-EDO, 118-EDO and 612-EDO are visualized in Figure 11. The 
analysis of the data explored in this section shows that all the numbers n up to 1200 with a log-compatible 
syntonic n-EDO scale can be written in the format n = 612x + 118y + 53z, where x, y and z are integers close 
to 0. The number n of the 32 scales with the lowest deviations can be written in this format with 0 ≤ 𝑥𝑥 ≤ 2, 
−2 ≤ 𝑦𝑦 ≤ 2 and −2 ≤ 𝑧𝑧 ≤ 1.  
 
 

2c a b c> > >
a b c> >
a b c> =
a b c= ≥

a b c≥ ≥
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Figure 11. Relative deviations of the best fit for 53-EDO, 118-EDO and 612-EDO. The notes of the 
chromatic scale are numbered in horizontal direction from 0 to 12 with pitch reference G = 0, 12. 118-EDO 
has smallest deviations for minor second (1), major third (4), minor sixth (8) and major seventh (11) and 
greatest deviations for major second (2), fourth (5), fifth (7) and minor seventh (10). The envelopes 
min/max refer to absolute values. 
 

Therefore 53-EDO, 118-EDO and 612-EDO form a kind of generator system for log-compatible 
consistent scales. More precisely, the correct sizes of the n-EDO intervals can be linearly combined from the 
corresponding sizes in 53-EDO, 118-EDO and 612-EDO for all log-compatible scales with 𝑛𝑛 ≤ 1200.  

If a given n can be written as n = 612x + 118y + 53z, where −1 ≤ 𝑥𝑥 ≤ 3, −9 ≤ 𝑦𝑦 ≤ 10 and −8 ≤ 𝑧𝑧 ≤
7, the n-EDO sizes of the diatonic semitone a and the chromatic semitones b and c can be calculated with the 
formulas 𝑎𝑎 = 𝑥𝑥 ⋅ 57 + 𝑦𝑦 ⋅ 11 + 𝑧𝑧 ⋅ 5, 𝑏𝑏 = 𝑥𝑥 ⋅ 47 + 𝑦𝑦 ⋅ 9 + 𝑧𝑧 ⋅ 4 and 𝑐𝑐 = 𝑥𝑥 ⋅ 36 + 𝑦𝑦 ⋅ 7 + 𝑧𝑧 ⋅ 3 so that the sizes of the 
three semitones a, b and c are uniquely determined and hence the entire chromatic scale. In other words, the 
log-compatible n-EDO representation (for arbitrary values of 𝑛𝑛 ≤ 1200) of the syntonic chromatic scale can 
be determined without using logarithms – just on base of the values of 53-EDO, 118-EDO and 612-EDO. 
The main task for a given n is to express it as a suitable linear combination of 612, 118 and 53. Parts of the 
results of the corresponding calculations are shown in Table 11. 

The following example uses n = 935 and shows how the n-EDO representations of Newton’s 
chromatic scale can be calculated by hand from the first four columns of Table 11: Because 935 can be 
written as 935 = 2 ⋅ 612− 2 ⋅ 118− 1 ⋅ 53 the coordinates for 935-EDO (dev rank 21) are (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
(2,−2,−1) By substituting them into the formulas  

 
𝑎𝑎 = 𝑥𝑥 ⋅ 57 + 𝑦𝑦 ⋅ 11 + 𝑧𝑧 ⋅ 5 
𝑏𝑏 = 𝑥𝑥 ⋅ 47 + 𝑦𝑦 ⋅ 9 + 𝑧𝑧 ⋅ 4    
𝑐𝑐 = 𝑥𝑥 ⋅ 36 + 𝑦𝑦 ⋅ 7 + 𝑧𝑧 ⋅ 3,  
 

the sizes of the 935-EDO semitones can be obtained as follows: 
 

𝑎𝑎 = 2 ⋅ 57 + (−2) ⋅ 11 + (−1) ⋅ 5 = 87 
𝑏𝑏 = 2 ⋅ 47 + (−2) ⋅ 9 + (−1) ⋅ 4 = 72 
𝑐𝑐 = 2 ⋅ 36 + (−2) ⋅ 7 + (−1) ⋅ 3 = 55 

 
With these values of a, b and c and the semitone-pattern a-b-a-c-a-b-a-a-c-a-b-a the calculation of the 935-
EDO representation of Newton’s chromatic scale can be calculated as a cumulative sum: 
 

 𝑎𝑎 = 87 
𝑎𝑎 + 𝑏𝑏 = 87 + 72 = 129  
𝑎𝑎 + 𝑏𝑏 + 𝑎𝑎 = 129 + 87 = 246 
𝑎𝑎 + 𝑏𝑏 + 𝑎𝑎 + 𝑐𝑐 = 246 + 55 = 301 
. .. 
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Table 11. Coordinates (x, y, z) of the numbers n up to 1200 (where , related 
semitone sizes (a, b, c) and chromatic scales ordered according to deviations in n-EDO units (see 
Appendix_4 (http://hdl.handle.net/1811/92832) for the complete data). 

 

612 118 53n x y z= ⋅ + ⋅ + ⋅

http://hdl.handle.net/1811/92832
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The numbers 53 and 118 are relatively prime. Therefore, every integer can be written in the format 
𝑛𝑛 = 𝑥𝑥 ⋅ 53 + 𝑦𝑦 ⋅ 118 [36]. It is important to note that the strong restrictions on the coefficients x, y, z are 
responsible for the feature that the intervals of the log-compatible consistent chromatic scales can be 
calculated as described. For example, if the condition on z were weakened to −8 ≤ 𝑧𝑧 ≤ 8, the numbers 306 
and 918 could be written in two ways as combinations of 612, 118 and 53: 

 
306 = −118 + 8 ⋅ 53 = 612 + 118 − 8 ⋅ 53 and 918 = 612− 118 + 8 ⋅ 53 = 2 ⋅ 612 + 118− 8 ⋅ 53 
 
Only the combinations with 𝑧𝑧 = −8 result in the correct log-compatible semitones, if the formulas for a, b 
and c are applied. Newton’s chromatic scale has a particularly weak approximation in 306-EDO, although it 
is well suited to approximate Pythagorean tuning [37], and also 918-EDO has very large deviations. 

The coordinates highlighted grey in Table 11 are located in the smallest cuboid of Figure 12. The 
column “rnk” (rank) is calculated with x2 + y2 + z2. The incompatibility index cmpt measures the total 
deviations from the scale defined through direct log-approximation in n-EDO units. For the definition of the 
consistency levels cns, see Table 10. The integer triplets (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) correspond to points in a three-dimensional 
space. It can be shown that within a cuboid grid of the dimensions 7 × 38 × 15 [38] the representation of a 
number n in the format 𝑛𝑛 = 𝑥𝑥 ⋅ 612 + 𝑦𝑦 ⋅ 118 + 𝑧𝑧 ⋅ 53 is unique and that there are no larger cuboids with 
this property. The results of the geometrical analysis are summarized and visualized in Figure 12. 
 
 
 

 
Figure 12. Four nested cuboids for n up to 1200. They are defined by the following ranges of x, y and z. 
[0, 2][-2, 2][-2, 1]: 60 points; contains the numbers n of the 32 scales with the lowest deviations 
[-1, 3][-9, 10][-8, 7]: 1600 points; contains the numbers n of the 374 compatible scales 
[-2, 5][-19, 19][-8, 7]: 4992 points; maximum cuboid with unique representation of n (1153 scales) 
[-3, 5][-19, 19][-8, 7]: 5616 points; contains all numbers n up to 1200; 12 ambiguous representations 
 

The incompatibility index (cmpt) measures the deviation of a given representation of the syntonic 
chromatic scale from the best logarithmic pitch values. It is defined as the sum of the individual absolute 
deviations in n-EDO units, so that an index of 0 is perfect compatibility. There are 372 numbers n between 
12 and 1200 with the incompatibility index 0, which means that the related scales agree with the direct 
logarithmic approximations, and 13 scales have the maximum log-incompatibility index of 7. 

There are 356 scales with n between 12 and 1200 which are strongly consistent and log-compatible 
at the same time. Only 16 compatible scales have consistency levels greater than 0 – none of these values is 
greater than 3. The corresponding octave dividers n are listed in Table 12. 

 
Table 12. List of the log-compatible scales (cmpt = 0) with consistency levels (cns) greater than 0. 
 

cns cmpt n 
1 0 29, 41, 63, 82 
2 0 7, 19, 31, 43, 55 
3 0 10, 12, 22, 24, 34, 36, 46, 56, 58 
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  The lowest deviation 0.273 for a log-incompatible scale occurs at n = 920 and the highest deviation 
of 0.3912 for a log-compatible scale at n = 306. In other words, the root mean square deviation does not fully 
separate compatible from incompatible scales. It is decisive only for deviations less than 0.273 and for 
deviations greater than 0.3912. 

A simple ranking of the representations 𝑛𝑛 = 𝑥𝑥 ⋅ 512 + 𝑦𝑦 ⋅ 118 + 𝑧𝑧 ⋅ 53 is defined by the Euclidean 
norm, 𝑑𝑑 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2the distance of the point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) from the origin (0, 0, 0) and it corresponds to the 
square root of the column rnk in Table 11. Low values of d correlate to low deviations (dev) of the n-EDO 
chromatic scales from the syntonic chromatic scale. The graphs in Figures 13a/13b show that the coordinates 
x, y, z of a number n can be used to estimate the quality of the fit of an n-EDO system with the syntonic 
chromatic scale. However, there is no monotone relationship between Euclidean norms of these points and 
the corresponding root mean square deviations. 

 
Figure 13a. The horizontal axis of this plot measures the distance of points (x, y, z) from the origin (0, 0, 0), 
and the vertical measures deviations in n-EDO fits. Points on the same vertical line are located on the same 
spheres about the origin. Neither the related coordinates nor the corresponding numbers n of the points 
between the spheres of radius 1 and 5 are indicated. The three points on the unit sphere represent the best 
EDOs with n = 53, n = 118 and n = 612. 
 

 
Figure 13b. As Figure 13a but with sphere radiuses up to 21. The configuration is in a good linear 
correlation. 
 

The two curves in Figure 14 show that the Euclidean norms 𝑑𝑑 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 of 𝑛𝑛 = 𝑥𝑥 ⋅ 512 + 𝑦𝑦 ⋅
118 + 𝑧𝑧 ⋅ 53 (norm: blue) and the deviations of their n-EDO representation from the syntonic chromatic scale 
(rms_u: red) form very similar patterns. This means that the coordinates (x, y, z) explain the quasi-chaotic 
dependence on n of the deviations to a wide extent. Both graphs have pronounced minima at 12, 53, 53 ± 12 
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as well as at 118, 118 ± 12. Some of the strong maxima (indicating inaccurate approximations) occur at 47, 
47 ± 12. Recall that 118 = 2·53 + 12 = 65 + 53 = 2·59 and that the poor 59 (rejected by Newton, see Figure 
9a), is exactly in the middle between the pronounced minima at 53 and 65. 
 

 
Figure 14. The diagram shows the Euclidean norm (above) of the combinations 𝑛𝑛 = 𝑥𝑥 ⋅ 612 + 𝑦𝑦 ⋅ 118 + 𝑧𝑧 ⋅
53 and the root mean square deviations of the corresponding consistent n-EDO representation from the 
syntonic chromatic scale for values of n < 134. Pronounced maxima and minima are highlighted. Maxima 
correspond to weak and minima to accurate approximations [39].  
 

CONCLUSION 
 

The controversies about syntonic pitch systems and their many ambiguities, as well as the presence of various 
tempered tunings in the 16th century and later, demanded mathematical skills and powerful tools to compare 
the related scales and the sizes of the many different intervals efficiently. Accurate tables of logarithms were 
published in the early 17th century. The use of equal divisions of the octave to measure pitch systems was 
advanced by Simon Stevin, Marin Mersenne, Nicolaus Mercator, Christiaan Huygens, Isaac Newton and 
others. The basic idea was to find fine grained “meta-scales” (lowest common denominators) which could 
express the scales under consideration as subsets very accurately. Newton found two of the three best meta-
scales for limit-5 chromatic scales among the equal divisions of the octave with less than 1783 parts.  

It is unlikely that the division of the octave into 612 equal parts could have been found without using 
a logarithm table. However, the division into 53 parts, which is at the same time an optimum for the 
Pythagorean tuning, could have been found with the knowledge of Boethius. Jacobus Leodiensis in the 14th 
century proposed a monochord of 53 commas only, a scale with 41 Pythagorean commas and 12 intervals a 
little smaller [40]. My tentative reconstruction of Newton’s implicit line of reasoning shows how his various 
chromatic EDO-approximations can be derived from the 612-EDO representation of the chromatic scale with 
no need for further logarithms. 

The reconstruction of Newton’s approach to the tuning problem led to some more general 
mathematical considerations in the final part of this article. I have shown that the optimum divisions of the 
octave into 53, 118 and 612 equal parts can be used to generate a comprehensive collection of consistent n-
EDO scales for arbitrary divisions of the octave with up to n = 1200 equal parts. This collection contains the 
scales which agree with direct rounding as a subset. The interpretation of the related numbers n as points in 
a three-dimensional space revealed an almost linear relationship between their distance from the origin and 
the quality of the related n-EDO representation of the syntonic chromatic scale. The required calculations 
rely only on the knowledge of three optimum equal divisions, 53-EDO, 118-EDO and 612-EDO – the key to 
the large data sets added to this text is hidden in Newton’s analysis of the chromatic scale given in Figure 6a. 
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NOTES 
 

[1] Correspondence can be addressed to: Dr. Daniel Muzzulini, Bläsiring 42, CH-4057 Basel, 
daniel@muzzulini.ch. 
 
[2] Wardhaugh (2013, pp. 85-113). The College Notebook (MS Add.4000), Cambridge University Library, 
Manuscript 225, is also published online <http://cudl.lib.cam.ac.uk/view/MS-ADD-04000/1> [visited 2020-
04-28] 
 
[3] EDO stands for Equal Division of the Octave; 12-EDO is equal temperament with 12 pitches per octave. 
 
[4] Comparable statements holding “to a great extent” are frequently given in perceptual psychology, where 
some (two or three) main factors are determined that would explain a complex phenomenon such as musical 
timbre by projecting experimental data to a low dimensional structure. 
 
[5] A monochord is an experimental device (or musical instrument) with a single string that can be divided 
with moveable bridges in order to study the relationships between musical intervals. 
 
[6] This is a misleading designation, because the Pythagorean chromatic and enharmonic genera and systems 
(as for example described and transmitted by Boethius) had interval ratios containing higher prime numbers. 
In the course of the history they disappeared and the medieval modes were usually constructed on base of 
proper diatonic tetrachords and hexachords only. 
 
[7] The full Greek systems (systema teleion) have two different octaves; only the upper octave contains both 
Bb and B. 
 
[8] The combinations lead to just minor thirds (6 : 5) and two different whole tone steps (9 : 8 and 10 : 9). 
 
[9] Vincenzo Galilei and Gioseffo Zarlino in the 16th century used the term “Sintono di Tolomei” for the just 
intonation diatonic scale. Limit-5 pitches of the same name differ by syntonic commas, which are a little 
smaller than Pythagorean commas. 
 
[10] One of these grids uses three rows of fifths, see Wardhaugh (2013, p. 161, p. 227) 
 
[11] The use of musical number triangles in historical sources is discussed in Muzzulini (2015, 212-215) 
 
[12] The continued fractions expansions are independent of the base of the underlying number system. 
Irrational numbers correspond with infinite continued fractions (Euclid’s algorithm does not come to an end 
for irrational ratios), cf. Schechter (1980). The convergence of the continued fractions approximation to a 
given irrational number is comparably slow. 
 
[13] It follows from Proposition 3 of the Euclidean “Sectio canonis” (Barker Ed. 1989, p. 195; Lindley & 
Turner-Smith 1993, pp. 228-229). 
 
[14] Continued fractions were used in music theoretical writings of the 18th and 19th centuries Lambert (1774, 
59) and Drobisch (1852, 76), see also Carey, N., & Clampitt, D. (1989, 197-198). 
 
[15] See Barbour (1951), Žabka (2010; 2013), Muzzulini & Vogtenhuber (2016) 
 
[16] Wardhaugh (2013, pp. 1-84), Descartes (1987, 47) 
 

mailto:daniel@muzzulini.ch
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[17] I became aware of this diagram through a personal communication by Susan F. Weiss (1999). See also 
Snyder (1983, 1986). 
 
[18] Gaukroger (1995, pp. 55-59). But Descartes did not treat meantone temperaments in his “Compendium 
musicae” or the tuning of lutes. 
 
[19] The cent is a modern unit of interval size, so that the 12-edo semitone measures 100 cent and the octave 
therefore 1200 cent. To obtain cent values from Newton’s values multiply his numbers by 100. 
 
[20] There are 118 classes of chromatic scales that can be written as uninterrupted chains of Pythagorean 
fifths (3 : 2) and small fifths (40 : 27). See also Žabka (2013). The Pythagorean chromatic 12-note scale has 
just two different semitones (256 : 243 and 2187 : 2048). By convention, the note names of chromatic 
semitones begin with the same letter and differ by a simple alteration, such as C-C♯, Db-D or F♯-F♯♯, whereas 
the notes E-F, C#-D, C-Dd or F♯♯-G♯ form diatonic semitones. In syntonic chromatic scales the chromatic 
and/or diatonic semitones can occur in different varieties. 
 
[21] See Barbour (1951), Muzzulini, D. & Vogtenhuber (2016) 
 
[22] Frequency is measured in Hertz, i.e., full periods per second. Mark Lindley looked at Newton’s octave 
divisions more than 30 years ago and claimed the Newton favored 53-EDO over all other divisions (Lindley 
1987, pp. 206-210). 
 
[23] The curves are explained in Wardhaugh (2013, 96-97). 
 
[24] If they were the same, they would be equal to 6 semitones of the 12-tempered tuning. 
 
[25] The distinction between deviations with respect to the unit and absolute deviations (in cent) is crucial 
for the notion of quality of best fit used in this article. 
 
[26] See http://sound-colour-space.zhdk.ch/diagrams/39  
 
[27] It is even optimal for EDOs with a unit interval greater than 0.67 cent. The coarsest better approximation 
is 1783-EDO, see Table 7. 
 
[28] Later in this text the deviations are formally measured as root mean square deviations. 
 
[29] According to Boethius, the interval of the Pythagorean comma is defined as six whole tones minus one 
octave. It has the ratio 531,441 : 524,228. Boethius (1867, 264-267: Inst. Mus. II, 31) 
 
[30] Mercator’s music theoretical manuscripts are published in Wardhaugh (2013, 129-236). 
 
[31] Newton knew an interpretation of the Greek tetrachord’s genera with syntonic intervals (Ptolemy, 
Zarlino) not looked at by Descartes.  
 
[32] See Appendix_5 (http://hdl.handle.net/1811/92832) for detailed data about this point. 
 
[33] Newton used the same abbreviations for the three semitones of his scale. 
 
[34] If the condition 2c > a is violated, the lesser chromatic semitone is more like a quartertone than a 
semitone. 
 
[35] Although 12-EDO does not distinguish between different semitones at all, it is a consistent 
approximation to Newton’s syntonic chromatic scales.  
 
[36] This is a general property for pairs of relatively prime numbers, so that even 612 could be obtained from 
53 and 118 only: 

http://sound-colour-space.zhdk.ch/diagrams/39
http://hdl.handle.net/1811/92832
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[37] Notice that 306-EDO is related to 612-EDO as 59-EDO to 118-EDO. Both 306-EDO and 59-EDO give 
a “very poor” chromatic scale where some pitches are to be rounded by almost half an EDO unit. Newton 
did not give the full representation for 59-EDO, and he did not look at all at 306-EDO.  
 
[38] The dimensions are given as side lengths of the cuboid not as numbers of grid points. 
 
[39] The two graphs are differently scaled in the y-direction. 
 
[40] Jacobus Leodiensis (ca. 1260 – after 1330), suggests and depicts a monochord with 53 micro-intervals 
per octave: 41 Pythagorean commas and 12 intervals a little smaller than the Pythagorean comma 
(Pythagorean semitones minus three Pythagorean commas), cf. Smits van Waesberghe (ed), (1988, p. 106, 
p. 139, f. 51r) 
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