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ABSTRACT: We present Multitrack Contrapuntal Music Archive (MCMA, available at 
https://mcma.readthedocs.io), a symbolic dataset of pieces specifically curated to 
comprise, for any given polyphonic work, independent voices. So far, MCMA consists 
only of pieces from the Baroque repertoire but we aim to extend it to other contrapuntal 
music. MCMA is FAIR-compliant and it is geared towards musicological tasks such as 
(computational) analysis or education, as it brings to the fore contrapuntal interactions 
by explicit and independent representation. Furthermore, it affords for a more apt usage 
of recent advances in the field of natural language processing (e.g., neural machine 
translation). For example, MCMA can be particularly useful in the context of language-
based machine learning models for music generation. Despite its current modest size, we 
believe MCMA to be an important addition to online contrapuntal music databases, and 
we thus open it to contributions from the wider community, in the hope that MCMA can 
continue to grow beyond our efforts. In this article, we provide the rationale for this 
corpus, suggest possible use cases, offer an overview of the compiling process (data 
sourcing and processing), and present a brief statistical analysis of the corpus at the time 
of writing. Finally, future work that we endeavor to undertake is discussed. 
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COUNTERPOINT is a musical term that refers to the interaction of two or more musical lines that have 
independent rhythmic and melodic contour properties while being strictly interconnected harmonically. This 
is a compositional style that reached peak popularity during the Baroque period. Contrapuntal techniques are 
among the most strictly defined in music and often imply voice imitation, as exemplified by canons, fugues, 
etc., and the computational modeling of contrapuntal polyphony is an endeavor that has attracted consistent 
interest and effort over the years. A multiplicity of methods and strategies have been employed to this end, 
from rule-based systems (Ebcioglu, 1993) and statistical sampling (Allan & Williams, 2004) to more recent 
neural network approaches (Hadjeres, Pachet & Nielsen, 2017). For those based on machine learning, data 
quality is, clearly, of uttermost importance. We posit that current trends in deep learning applications to music 
generation (requiring vast amounts of data) might encourage blind and/or non-critical usage of readily 
available datasets, which, in turn, might affect the musical results obtained. As computational musicology 
and machine learning become increasingly coupled, it is crucial to adopt a critical position towards the usage 
of large datasets and to adapt, modify, and curate the vast amounts of musical data to fit the context-specific 
analytic or generative task one undertakes (Huron, 2013). MCMA is our contribution to the subject. 

https://mcma.readthedocs.io/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.18061/emr.v16i1.7637
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MOTIVATION 

 
Computational musicology is well-equipped to study music empirically with tools such as the Humdrum 
toolkit [1], the VIS Framework (Antila & Cumming, 2014), and music21 (Cuthbert & Ariza, 2010). The latter 
is conveniently bundled with its own corpora, and there are also several other high-quality symbolic music 
corpora specifically curated with musicological analysis in mind, which are available online (Sapp, 2005; 
Devaney et al., 2015; Neuwirth et al., 2018; Gotham et al., 2018). However, even when combined, the 
available corpora only cover a very small part of the published musical works. A common strategy to increase 
the data size is to include MIDI-encoded performances although, for musicological analysis, the MIDI format 
is less congenial because it lacks pitch spelling disambiguation (e.g., a G# and an Ab are considered the same 
note). Moreover, MIDI keyboard input has proven to be an error-prone method. A study of a random sample 
of such scores from classicalarchives.com found that 8% of the encoded pitches did not match with the 
published score (Shanahan & Albrecht, 2013). In particular, voice separation in contrapuntal music seems to 
be a marginal concern when compiling a new dataset. It is true that there are available sets of string quartets 
and choral music that are written with independent parts [5]. But most available scores of keyboard music, 
for example, collapse the notes of a polyphonic passage into a single staff, making the discernment of voices 
a difficult task, unless one has formal musical analysis skills. Empirically analyzing counterpoint music is 
nearly impossible without voice separation (e.g., by means of “exploding” a part into its constituent voices). 
To address these issues, we sourced and edited MCMA [2], a symbolic music corpus of contrapuntal works 
encoded with independent voices. 

Using MCMA, each voice is assigned to a different track and can therefore be analyzed separately, 
which is convenient for investigating voice leading in counterpoint. A musicologist would be able to quickly 
find examples of retrograde inversions or augmentations in contrapuntal melodic lines, or find statistically 
valid answers for their questions: for example, what is the most common interval to use for parallel 
contrapuntal motion? Is contrary motion preferred to other types of motion? These questions pertain to a 
long-established line of computational musicological inquiry (Huron, 2016). Separating musical voices can 
also be valuable in an educational context. At the moment, counterpoint studies often focus on vocal parts; 
perhaps access to instrumental scores where voices are separated could allow students to more directly 
identify contrapuntal techniques. Additionally, instrumental scores typically comprise a wider array of 
intervallic motion and duration/subdivisions than does vocal repertoire (which results from the physical 
limitations of the human voice).  Figure 1 shows a trivial example. This affordance could then be further 
enhanced if coupled with the usage of score annotation software, for example, Dezrann (Giraud et al., 2018). 

 

 

 
 

Fig. 1. Comparing the first three bars of J.S. Bach’s Fugue No.3 in C# Major BWV 872, from the Well-
Tempered Clavier, Book II, (top) against the same extract in MCMA’s corpus (bottom). 
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Fig. 2. The first two bars of J.S. Bach’s first two-part inventions viewed as a “query-answer” problem. 
 
 

We also envisage uses of MCMA in the domain of generative models. For example, the relation 
between two voices in a contrapuntal piece becomes paramount if one wants to employ natural language 
processing models and treats one voice as the musical response to a “query.” As an example of MCMA’s 
application, Nichols et al. (Forthcoming, 2021) consider the task of neural machine translation (e.g., English 
to Japanese) where the “source sentence” is one musical voice and the “target sentence” is another 
simultaneous contrapuntal voice. Figure 2 illustrates this task. As in translation, the source imposes some 
constraints on the target, but it doesn’t define it completely. Unlike in translation, contrapuntal musical 
interactions are nearly synchronous, and both source and target have the same vocabulary. Despite these 
caveats, it is possible to envisage practical applications using this paradigm. 

These are but few possible applications of MCMA, and we look forward to seeing many more 
appropriations of this corpus. 

 
THE MCMA CORPUS 

 
MCMA aims at being Findable, Accessible, Interoperable, and Reusable, in adherence to the FAIR principles 
[3]. It has an extensive metadata protocol, which is described in detail in its documentation [2]. The metadata 
is registered in comma-separated value files, one per collection: each musical work is assigned a globally 
unique and persistent identifier and is richly described with a plurality of accurate and relevant attributes. We 
sourced the pieces in MCMA from disparate readily available online datasets/databases under free-content 
licensing. For most of the files presented in MCMA, we started our curation process from symbolic scores 
already available in the Werner Icking Archive [4], KernScores [5], MuseScore [6], and other online sources 
[7-9]. Regardless of the provenance’s encoding format, we then proceeded to convert every piece in MCMA 
to compressed musicXML (mxl), which supports correct pitch spelling (a sine qua non for musicological 
analysis) and is natively supported by most visual editors, potentially catering for a less techno-affluent 
demographic. This required a careful comparison of the resulting files with the published edition of the scores 
available on the International Music Score Library Project (IMSLP) [10] to remove all errors (pitch spelling, 
spelled out ornaments, corrupted files, etc.). Roughly two thirds of the material presented required extensive 
modification in this stage. The last step was the separation of each piece into tracks. Arguably, MCMA’s 
most important contribution is the multi-track expansion of several of J.S. Bach’s harpsichord works (e.g., 
The Goldberg Variations, the complete Well-Tempered Clavier, the Art of the Fugue, and the Sinfonias). 
Considering WTC, although a track-separated version was already available in KernScores, we created/edited 
an independent version [11]. 

Furthermore, MCMA’s versions also remove, when present, expression markings, dynamics and 
embellishments which were supposedly introduced via MIDI performance (but which were not present in the 
original score). 

In the context of this work, a “track” is a technical term we use to refer to a single predominantly 
monophonic voice from a polyphonic piece encoded as a part of musicXML score. In MCMA, the occasional 
polyphony within a track is kept. For example, if a fugue is considered to be in 4 voices, the corresponding 
MCMA file will contain exactly 4 tracks, some of them having multiple voices for a short time (this “sporadic 
polyphonic split,” in which a single track temporarily becomes polyphonic, is akin to **kern’s spine split) 
(Huron, 1997). The specific choices pertaining to this splitting are not functionally crucial, but have important 
implications in terms of musical perception, aesthetics, and stylistic authenticity. Therefore, resolving 
sporadic polyphonic splits requires careful consideration to avoid having to add an extra, mostly empty, part.  



Empirical Musicology Review  Vol. 16, No. 1, 2021 

 102 

 

 

 

 
Fig. 3. Comparing bar 32 of J.S. Bach’s Fugue No.3 in C# Major BWV 872, from the Well-Tempered 
Clavier, Book II, (top) against the same extract in MCMA’s corpus (bottom). 

 
 
There are good reasons why one would want to avoid this. For example, to maintain the polyphonic 

coherence and the number of voices intended (and/or specified) by the composer. This also ensures that each 
track is musically more meaningful and functional. Figure 3 shows an example taken from the same fugue in 
Figure 1. This particular fugue is in three voices; therefore, it was expanded to three tracks. However, in bar 
32 through to the end (bar 35) the polyphonic texture becomes denser. This passage is, in MCMA, dealt with 
simply by means of splitting track 2 into dyads (same voice), while keeping the added voice in track 3. While 
we are aware that these choices might be arguable in some cases, we consider this a necessary step towards 
the creation of a multi-track collection of contrapuntal pieces and argue that, given the sparsity of their 
occurrence and the overall keeping of all the original notes, the specifics of which track notes are reassigned 
to are of lesser importance. 

The occasional polyphony within individual tracks which often occurs in near correspondence of 
terminal cadenzas is generally not as problematic, and easily dealt with. Figure 4 exemplifies this case. 

 

Fig. 4. The last bar of J.S. Bach’s Prelude No.6 in D minor BWV 851, from the Well-Tempered Clavier, 
Book I, multi-track expanded in MCMA’s corpus. 
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The choices behind the processing/editing process described thus far are informed by musicological 
concerns, whereby we aim at preserving the original pieces’ harmonic and melodic integrity, particularly 
with respect to voice-leading.  

At the time of writing, MCMA comprises 475 files. Each file is either a piece in its entirety or a 
section from a larger piece. Examples of the latter are sonata movements, single variations in a set of theme 
and variations, or, in the case of an opera, sections of a scene. The music represented in MCMA is by 5 
Baroque composers and written between 1674 and 1750. Its combined duration is 76,699 quarter notes, which 
amounts to approximately 12 hours if one assumes an average bpm (beats per minute) of 108 (see Table 1).  

 
Table 1. Description of the MCMA corpus.  

Composer Number of Pieces Publication Years Total duration (quarter note, hours) 

Albinoni, Tomaso 72 1708 – 1712 9,406.75 ♩ ≈ 1h30’ 

Bach, Johann Sebastian 178 1722 – 1750 33,171.25 ♩ ≈ 5h10’ 

Becker, Dietrich 45 1674 7,505.00 ♩ ≈ 1h10’ 

Buxtehude, Dietrich 88 1694 – 1696 11,019.00 ♩ ≈ 1h40’ 

Lully, Jean-Baptiste 92 1682 15,597.00 ♩ ≈ 2h20’ 
 

Each file contains between two and six tracks at most, with the majority (239) being in three tracks, 
153 in two tracks, and 83 in four or more tracks (see Figure 5, left). There are tracks played by nine different 
instruments: 31% of harpsichord and 31% of violin, and the remaining divided between violoncello, voice, 
gamba, violone, tenor viol, oboe, and bassoon (see Figure 5, right). 

 
 

 
Fig. 5. Statistics on the corpus. Left: number of pieces per type of piece. Right: Overall number of tracks in 
a corpus per instrument. 

 
CONTRIBUTIONS & FUTURE WORK 

 
MCMA’s core archive is rather small at the time of writing. Rather than aiming to release a completed corpus 
with sporadic version updates, we decided to extend a call for contributions to the wider community. We 
anticipate this to be an endeavor of interest for the music information community and for musicologists, in 
general. In the project’s documentation [2], detailed instructions for contributors are outlined, and the 
functionality of the utility assets is explained. The latter include Python scripts for the automatic generation 
of the metadata for a given musical collection (contingent upon the invariance of some of the metadata fields, 
such as the provenance, the reference edition, etc.), the statistical analysis of the corpus, and metadata 
templates. If the contribution challenge were to attract sufficient interest from the community, MCMA’s size 
could grow considerably, making it even more apt for machine learning applications (large data is a deciding 
factor in this context). 
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Besides the addition of more contrapuntal pieces, future work includes extending MCMA via a 
tagged query-response subset (akin to SQuAD [12]) which will entail meticulous musicological effort in 
identifying variable-length musical phrases that correspond to each other. While this process can be partly 
automated via segmentation algorithms (Tenney & Polansky, 1980; Cambouropoulos, 2001) and strategies 
such as Dynamic Time Warping (Gold & Sharir, 2018), it still requires human intervention and editing. 

We also plan to build an interactive companion website to MCMA, whereby users who are not 
necessarily techno-affluent can sort, organize and explore the corpus’s content. Such an interactive version 
of MCMA might include in-browser score rendition and database functionality (e.g., aggregate functions) 
which can be used as a first port of call for basic statistical enquiry of the musical archive. Additionally, more 
sophisticated and domain-specific functionality regarding automatic feature extraction could be added to said 
companion website, to include visualization of melodic contours, distributions (e.g., pitch and interval class, 
etc.), n-gram analysis, Implication-Realization Model analysis (Yazawa et al., 2016), and melodic 
segmentation. 
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NOTES 
 
[1] https://www.humdrum.org/ 

[2] https://mcma.readthedocs.io/en/latest/contents.html 

[3] https://www.go-fair.org/fair-principles/ 

[4] http://www.icking-music-archive.org/index.php 

 [5] http://kern.ccarh.org/ 

 [6] https://musescore.org/ — note that scores from this website are no longer available as MuseScore was 
recently acquired by the company Ultimate Guitar. 

[7] http://www.jsbach.net/midi/index.html 

[8] https://www.lysator.liu.se/~tuben/scores/ 

[9] https://www.welltemperedclavier.org 

[10] https://imslp.org/ 

[11] As a starting point, we used the Open Well-Tempered Clavier project [9] for Book I and the work by 
Musescore user classicman [6] for Book II. Several independent editions were consulted in the preparation 
of the track-separated scores including the following: G. Henle Verlag, Urtext: Das Wohltemperiertre 
Klavier Teil I (2007), Willard A. Palmer: The Well-Tempered Clavier (1996), Dover: The Well-Tempered 
Clavier, Books I and II, Complete (1983), Dover: The Well-Tempered Clavier: 48 Preludes and Fugues, 
Book 1. Commentaries by Donald Francis Tovey (2014), Edition Peters, Urtext: Wohltemperiertes Klavier I, 
and Edition Peters, Urtext: Wohltemperiertes Klavier II. 

[12] https://rajpurkar.github.io/SQuAD-explorer/ 
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