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ABSTRACT: Patterned microtiming deviations from metronomic regularity are 
ubiquitous in the performance of metered music. The relevance of microtiming to the 
perception of music has been studied since the 1980s. Most recently, microtiming has 
been investigated as a cause of groove (i.e., the pleasant urge to move in response to 
music). The study of microtiming relies on the availability of microtiming data. This 
report presents three large corpora of onset timings derived from drum kit performances 
in popular Anglo-American popular music styles. These data are made freely available 
(CC 4.0 license) to provide a resource for use by analysts and experimenters alike. They 
offer a common point of reference for future studies into the temporal facets of music 
performance. The datasets adhere to FAIR principles; they thus facilitate replication of 
analyses and experimental stimuli. 
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BACKGROUND 
 
HUMANS perform metered music with considerable temporal flexibility. Minute timing deviations from 
strict metronomic regularity of the order of tens of milliseconds are commonly referred to as microtiming. 
On a basic level, microtiming arises from the restricted accuracy of human motor performance (Rasch, 1988), 
yet motor jitter alone cannot explain the considerable size and consistent patterning of microtiming deviations 
in competently performed music. This indicates that microtiming serves aesthetic and expressive purposes 
relevant to style/genre (e.g., Johansson, 2010; Naveda et al., 2011) and individual performers (e.g., Prögler, 
1995). Research has shown that tempo rubato in the performance of European art music clarifies the form of 
a piece (Clarke, 1985; Repp 1998, Juslin et al., 2001; Senn et al., 2012). Microtiming in Western popular 
music has been linked to elusive perceptual qualities such as music’s feel (e.g., laid-back feel, Kilchenmann 
& Senn, 2011) and groove (the pleasurable urge to move in response to the music, Janata et al., 2012) but 
empirical results have been inconsistent (for an overview, see Senn et al., 2017; Hosken, 2020). 

This report presents three corpora of timing data drawn from drum set performances in Anglo-
American popular music styles. It contributes to a growing corpus of datasets that allow for the 
comprehensive study of microtiming phenomena across a variety of musical styles and genres, such as Cuban 
son and salsa (Poole et al., 2018; Maia et al., 2019), classical string quartet (Clayton & Tarsitani, 2019), solo 
piano (Goebl, 2001), Malian jembe (Polak et al., 2018), Western popular music drumming (Gillet & Richard, 
2006), and others. 
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This collection of timing data about drum set performance is made freely available in a format that 
is findable, accessible, interoperable, and reusable (FAIR Principles, Wilkinson et al., 2016) in the hope to 
offer a common resource to timing research that may be used in a consistent and replicable way across studies. 
It comprises of 62 drummers performing over 19,000 bars, nearly 700 minutes of drumming, in Anglo-
American popular music styles. The timing data have been collected, processed, and filtered to offer machine- 
and human-readable information about how drummers perform. All of the drum patterns collated here have 
as their background structure the “archetypical rock beat” (Tamlyn, 1998, p. 11, see Figure 1). This archetype 
underlies a variety of drum patterns that feature in a range of musical styles such as pop, rock, funk, soul, 
disco, hip hop, drum and bass, and techno. 
 

 

 

 
Fig. 1. The archetypal Anglo-American popular music drum groove (top) and, connected via dashed lines, 
examples of drum patterns that derive from it. 
 
 

METHODS 
 
Data Sources 
 
This collection features one novel corpus of drum grooves (The Loop Loft) as well as a repackaging of two 
existing corpora (Lucerne Groove Research Library and Google Magenta’s Groove MIDI Dataset). Timing 
data about the three corpora have been obtained using different methods and each corpus’s drummers 
performed under different conditions. 

The three sources are: 
 

1) The Loop Loft (https://www.thelooploft.com/) is a commercial sample shop that provides short loops 
for DJs and producers to use in their creative work. The company invites performers into the studio to 
record short drum patterns while listening to a click track. Audio files for each microphone placed on 
each instrument within the drum kit are available allowing for clear identification of which drum was 
struck at what time. All audio is provided dry (no EQ, compression, reverb, etc.). Information about 
microphone types or proximity of microphones to the drumheads is unavailable. The audio of the click 
tracks is not available, so the exact timing of click track events is unknown. Each track title contains 
tempo information in bpm. Here, 1,467 tracks performed by four world-famous session musicians were 
purchased and analyzed using the mirevents function of the MIRtoolbox in MATLAB (Lartillot et al., 
2008). Onsets below a threshold of 10% the maximum amplitude were discarded to remove bleed from 
other drums. Measurement precision is expected to be < 1 ms. 

2) The Lucerne Groove Research Library (https://www.grooveresearch.ch/) is a corpus of 251 drum 
grooves drawn from commercial recordings played by 50 highly acclaimed drummers in the fields of 
pop, rock, funk, soul, disco, R&B, and heavy metal. Two professional musicians transcribed the drum 
patterns by ear and manually identified each drum onset using spectrograms and oscillograms in LARA 
software (www.hslu.ch/lara, version 2.6.3). Onset measurement is estimated to be accurate to ±3 ms for 
most of the music excerpts and, even in the most problematic cases, the timing measurement error is 
expected to rarely exceed ±10 ms (see Senn et al., 2018 for full method). Drum patterns are provided in 

https://www.thelooploft.com/
https://www.grooveresearch.ch/
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MIDI and MP3 format. Since these drum performances are part of full-band recordings (i.e., not just 
the drums in isolation) drawn from 1956 to 2014, it is not knowable whether a click track was used in 
the performance, nor the precise location in time of a click track if one was used. 

 

3) Google Magenta’s Groove MIDI Dataset (https://magenta.tensorflow.org/datasets/groove) is a corpus 
of 503 drum patterns performed on a Roland TD-11 electronic drum kit by five professional drummers 
and four amateur players (Google employees). Drummers, who are anonymized in the set and referred 
to only by ID number, played on this MIDI drum kit to a click track. The TD-11 has a temporal 
resolution of 480 MIDI ticks per quarter note, so the lowest resolution (for a performance recorded at 
50 BPM) is 2.5 ms and the mean resolution of all performances is 1.17 ms. The drummers performed 
drum patterns and solos for as long as they desired. This corpus was initially created as training data for 
a machine learning project into expressive drum performances (Gillick et al., 2019). The audio of the 
click tracks is not available, so the exact timing of click track events is unknown. The track titles inform 
about the tempo of each track (bpm). 

 
Data Filtering 
 
The onsets of all corpora were filtered according to the exclusion criteria summarized in Figure 2. 
 

 
 
Fig. 2. Schematic representation of the data filtering process. 

https://magenta.tensorflow.org/datasets/groove
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The differences in how the filtering process affected different corpora may be attributed to the unique 
nature of the performances captured by each set. For example, the Lucerne corpus is comprised entirely of 
the “core grooves” of famous songs in typical rock/pop styles and so no complete tracks were excluded from 
the set. The Loop Loft corpus, however, features numerous tracks explicitly labelled “Fill” and numerous 
tracks in Latin American styles, so several complete tracks were excluded. Likewise, the Magenta 
performances are in a range of styles, and often feature extended drum solos and groove patterns that are 
based around the tom-toms (these bars are filtered out). Unfiltered data sets are available upon request. 
 
Estimation of Microtiming Deviations 
 
For each drum onset, the metric position within the track (MetricTime, in beats with divisions every 16th note) 
and an exact onset time (OnsetTime, in seconds) are available. The drummers in the Loop and Magenta 
corpora utilized click tracks throughout the recording process, but the onset times of the clicks are 
unavailable. Therefore, we used simple linear regression models to predict OnsetTime from MetricTime (see 
Figure 3). 
 
 

 
 
Fig. 3. Example of the linear regression used to model the MetronomicOnsetTime. Points represent 
individual drum onsets, and the grey line is the fitted regression line. 
 
 

The fitted values of the regression models provided a metronomic reference (MetronomicOnsetTime, 
in seconds), and microtiming deviations (MicrotimingSeconds) were calculated as the difference between 
OnsetTime and MetronomicOnsetTime (see Equation 1). 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂 𝑂𝑂 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂𝑂𝑂 𝑀𝑀 𝑀𝑀 (1) 

  
The slopes of the regression models were used to calculate the Tempo of the track. This, in turn, 

allowed to calculate MicrotimingBeats (see Equation 2). 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇

60 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇

 

 

(2) 

The performances of the Lucerne corpus were taken from commercial recordings that potentially 
exhibit tempo drift and may not have been recorded to a click track. Quadratic regression models were fitted 
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to the data to account for potential tempo drift. Higher polynomial orders were not found to significantly 
improve the fit of the model. 

Regressions were chosen to model the metronomic beat locations over established beat-finding 
procedures that use, for example, recurrent neural networks in conjunction with autocorrelation and comb 
filters (e.g., madmom, Böck et al. 2016) for reasons of parsimony, replicability, and to minimize the addition 
of noise into the data. By relying only on the onset timing data and information about which location on the 
metric grid this onset corresponds to, we also avoid involving heuristics that may be sub-optimal, for example 
some beat tracking algorithms require assumptions to be made based on extra musical information (e.g., 
about style or genre – Böck et al. 2014). For our corpora, the variance unexplained by the simple beat locating 
model is minimal, with only two tracks (out of 1,824) having an adjusted R2 lower than .995. Regression 
model fit estimates for the three corpora can be found in Table 1. 
 
 
 
 
 
 

THE DRUM GROOVE CORPORA DATASET 
 

Data Structure 
 
The Drum Groove Corpora dataset is made available online at https://osf.io/3sejt/ in comma-separated values 
format (DrumGrooveCorpora.csv). For every onset (287,328 rows), the following data (13 columns) are 
provided: 
 

• Corpus: the corpus to which the onset belongs (Loop, Lucerne, Magenta). 
 

• Drummer: the name of the drummer (for the Loop and Lucerne corpora) or an uppercase letter where 
the name is unknown (Magenta). 

 

• Track: a unique track name. 
 

• Year: the recording year of the track (Lucerne and Magenta only; Loop recordings are all post-2010, 
though specific details are not available). 

 

• Strike: indexes onsets of a track in the order of their OnsetTime. 
 

• Instrument: the instrument of the drum kit on which the stroke is played (HH = Hi-Hat, SD = Snare 
Drum, or BD = Bass Drum). 

 

• MetricTime: the metric time of the stroke (in beats), where 0.00 is bar 1, beat 1; 0.25 is one sixteenth 
note later; and 4.00 is bar 2, beat 1. 

 

• OnsetTime: the onset time of the stroke (in seconds) measured from the start of the audio/MIDI 
recording. 

 

• MetronomicOnsetTime: the metronomic onset time (in seconds), estimated by linear regression. 
 

• Tempo: the tempo (in beats per minute), estimated by linear regression. 
 

• MicrotimingSeconds: the difference between OnsetTime and MetronomicOnsetTime (in seconds). 
 

• MicrotimingBeats: the microtiming deviation as a proportion of the beat. 
 

• TrackDuration: the time difference between the first and last onset (in seconds). 
 
 
 
 

https://osf.io/3sejt/
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Data Description 
 
Table 1 provides descriptive statistics for the three corpora. The Magenta corpus is by far the largest of the 
three (217,009 onsets), followed by the Loop (41,497 onsets) and Lucerne (28,822 onsets) corpora. Magenta 
also consists of relatively long tracks (37.88 bars on average) compared to the very short Loop drum 
performances (2.89), and the eight-bar period excerpts of the Lucerne corpus. 

 
Table 1. Descriptive statistics for the three corpora. 
 

  Loop     Lucerne  Magenta  
      Drummersa 4   50   9  
Tracks 1,215   251   358  
         Bars 3,515   2,006   13,562  

 Mean bars per track 2.89   7.99   37.88  
          
Onsets          
 Hi-hat 19,102 (46%)  13,899 (48%)  72,250 (33%) 
 Snare drum 9,174 (22%)  6,317 (22%)  82,512 (38%) 
 Bass drum 13,221 (32%)  8,606 (30%)  62,247 (29%) 
 Total 41,497 (100%)  28,822 (100%)  217,009 (100%) 
                    Mean tempo (BPM) 103.30   115.40   104.80  
          Microtiming (in beats)         
 Mean 0.0000   0.0000   0.0000  
 Standard deviation 0.0277   0.0283   0.0509  
 Skewness 0.9732   -0.9481   -0.4165  
 Excess kurtosis 7.7995   7.7338   0.5998  
 Minimum -0.1817   -0.2948   -0.1783  
 Maximum 0.1938   0.1820   0.1759  
          Regression model fit (adj. R2)         
 Mean .9999   .9999   .9999  
 Minimum .9859   .9998   .9974  
 Maximum >.9999   >.9999   >.9999  
           

Note. a The Loop and Lucerne corpora both feature performances by Omar Hakim, hence the total number 
of drummers in the data set = 62.  
 

The Loop and Lucerne corpora show considerable similarities, while the Magenta dataset seems to 
stand apart. For example, the proportions of hi-hat, snare drum, and bass drum strokes are comparable across 
the Loop and Lucerne sets, with a large proportion of strokes played by the hi-hat, followed by the bass drum 
and the snare drum. In the Magenta set, the snare drum strokes are in a majority, followed by hi-hat, and bass 
drum events. 

The archetypical rock beat is strongly articulated in all three datasets: the bass drum strokes on beats 
one and three, the snare drum hits on the backbeats (two and four), and the regular eighth-note pulse of the 
hi-hat show a robust presence throughout all three Drum Groove Corpora (Figure 4). It can be seen, however, 
that the Magenta snare drum pattern is quite versatile, whereas, in the Loop and Lucerne corpora, the main 
role of the snare drum is to articulate the backbeats. 

The mean microtiming deviations are zero for all three corpora (Table 1). This is a direct 
consequence of the regression approach taken to fit the MetronomicOnsetTime to each track. But the standard 
deviation of the microtiming deviations (MicrotimingBeats) in the Magenta corpus (0.0509 beats) is 
substantially greater than the standard deviations in the Loop (0.0277 beats) and Lucerne corpora (0.0283 
beats). These differences in “tightness” are visible in Figure 4: the markings on each metric position are 
temporally (i.e., horizontally) more spread out in the Magenta corpus compared to the other two corpora. 
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Fig. 4. Strip plots of all onsets for bass drum (BD), snare drum (SD), and hi-hat (HH) for each corpus. 
Vertical spread within each strip is random jitter. 
 

CONCLUSIONS 
 
This data report describes the Drum Groove Corpora dataset, a large collection of data that adheres to the 
FAIR principles and focuses on rhythmic patterns and microtiming deviations in Anglo-American popular 
music drumming. The Drum Groove Corpora dataset will prove to be useful in a variety of research settings, 
for example: 
 
Modelling of microtiming deviations 
 
The dataset provides a basis to investigate and model the temporal processes that generate microtiming 
deviation patterns in popular music drumming. The Loop and Lucerne corpora invite study of microtiming 
profiles for different drummers, the three instruments of the drum kit, and different metric positions within 
the pattern. The Magenta corpus allows timing processes across longer performances to be studied, such as 
the elastic relationship between the performed tempo and the regular metronome click (akin to tempo rubato). 
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Study of rhythmic patterns  
 
The dataset allows for the study and classification of drum patterns that are derived from the archetypical 
rock beat. The Lucerne corpus offers a historic perspective in the sense that it represents a broad cross-section 
from more than half a century of popular music drumming. The Loop corpus focuses on recent performances 
by only four drummers and thus allows concentration on drummers’ personal preferences and idiosyncrasies. 

 
Selection of experimental stimuli  
 
The dataset may serve as metadata to help researchers screen and find experimental stimuli for listening 
experiments focused on microtiming deviations or rhythmic patterns. The audio files themselves can then be 
obtained from the respective sources: 
 

• Loop – https://www.thelooploft.com/ 
 

• Lucerne – https://www.grooveresearch.ch/index.php?downloads  
 

• Magenta – https://magenta.tensorflow.org/datasets/groove. See also the “Expanded Groove MIDI 
Dataset” that recreates all Magenta performances on 43 different virtual drum kits (Callender et al., 
2020). 

 
The data presented here was sourced from three corpora that show considerable differences with 

respect to the genre background of the music, popular music era, recording circumstances, performance 
duration, and the expertise of the drummers. These different conditions are reflected in the rhythmic and 
microtiming patterns enclosed in the three corpora and should be considered when the data is used for 
analysis. 
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