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ABSTRACT: We examine (ir)regularity in the musical structure of 736 monophonic 
children’s folk songs from 22 European countries, by simulating and detecting (ir)regularity 
with the computational model, IDyOM, and our own algorithm, Ir_Reg, which classifies 
melodies according to regularity of their musical structure. IDyOM offers a range of 
viewpoints which allow observation and prediction of various musical features. We used five 
viewpoints to measure the information content and entropy of musical events in songs. 
Analysis across the data shows absence of irregular musical structure in children’s folk songs 
from Croatia, Serbia, Turkey, Portugal, Hungary, and Romania. Conversely, absence of 
regular structure in children’s folk songs was found in Great Britain, Norway and 
Switzerland. Further analysis of (ir)regularity, by individual country, revealed the importance 
of patterns repeated at pitch in regular songs, and a higher occurrence of transposed repeated 
patterns in irregular songs. Principal component analysis (PCA) shows the salience of pitch 
and pitch intervals in the perception of (ir)regular structure. Neither rhythm nor contour 
affects the perception of regularity. Recurring pulse/meter and arch-like melodic structure 
were found in the majority of children’s folk songs. The study shows that irregularity exists 
in children’s folk songs, and that this genre can be complex.  
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INTRODUCTION 

A listener may experience music as “difficult,” “complex,” or even “incomprehensible.” Many listeners will 
put such music aside, and look for alternatives, unless they are explicitly interested in the reasons why a 
particular musical piece is perceived as it is. This paper explores this specific interest in the context of 
children’s folk songs. It specifically examines—and refutes—the assumption of many musicologists that 
children’s folk songs are simple or trivial. 

Behind each piece of music is the story of the creation of a musical structure, covering different 
musical elements and dimensions, and a musical syntax, a more or less formal characterization of rules that 
define the permissible structure—that is, how the constituent parts in a piece may be formed and combined 
over time (Rohrmeier & Pearce, 2018). 

Thus, Western tonal music is often considered to be fundamentally syntactic. A syntactic feature is, 
e.g., the hierarchical structure that is achieved by combining perceptually discrete related elements, on a 
range of timescales. Another syntactic feature is the sequential relation between musical elements, because 
the “syntactic functional psychological qualities” of some musical elements depends on the relation with 
others (Bigand et al., 2014, p. 2). 
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Several studies (e.g., Bigand & Poulin-Charronat, 2006; Koelsch & Jentschke, 2008; Bigand et al., 
2014; Mihelač et al., 2018; Mihelač & Povh, 2020a) point to the significance of musical syntax, and its 
contribution to the notion of structure which is regular—i.e., which conforms to syntactic rules—as opposed 
to irregular—non-conformant—structure. Broadly, these studies take either a traditional empirical approach 
(viz., involvement of listeners in experiments and in the evaluation of music), or, recently, a computational 
approach. The studies explore how musical syntax, and deviation in a musical structure, which occurs when 
structure does not conform with syntax, are related to the listener’s perception of (ir)regularity in musical 
structure, and their acceptance, pleasure, and understanding of musical pieces and/or musical genres. 

Taking the more traditional approach can be costly, and also scientifically challenging, because it is 
difficult to avoid subjectivity in evaluation tasks, both in musical experts and in listeners without musical 
training. Furthermore, it is difficult to replicate the results, as the response in a task can vary significantly 
between hearings, even if the same participants are involved in the replication (Mihelač & Povh, 2020b). 

In recent decades, computational approaches to the study of music have offered a more objective 
analysis of music (Potter, Wiggins, & Pearce, 2007), enabling identification of significant features (such as 
semiotic structure: Wiggins, 2010) in a musical structure, and comparison with the processing and production 
of music in humans. These computational methods are now becoming capable of simulating the human 
perception of music to some degree, especially where they are based on an underlying cognitive theory. 

The fact that computational models can be efficiently used in the simulation of the human perception 
of music was the motivation for a recent study by Mihelač and Povh (2020a). Human experts involved in the 
detection of (ir)regularity in the musical structure in a previous study (Mihelač & Povh, 2020b), and the 
evaluation of (ir)regularity of musical excerpts by listeners were replaced by simulating their responses with 
a computational model, Information Dynamics of Music (IDyOM: Pearce, 2005). 

The artificial model of the perception of (ir)regularity obtained by Mihelač and Povh (2020a) is 
shown to accord with human perception of irregularity in the previous study (Mihelač & Povh, 2020b), 
suggesting that expert-based detection of (ir)regularity in musical structure can usefully be replaced by a 
suitable computational model. In the current study, we used a similar approach to the (ir)regularity in musical 
structure, by simulating and detecting the (ir)regularity in musical examples with the computational model 
IDyOM, and our own algorithm, Ir_Reg, which classifies melodies according to regularity of the musical 
structure. The data for this study consisted of monophonic children’s folk songs. We used this corpus to show 
that children’s folk songs, often presumed to be simple and regular in structure (Herzog, 1944; Romet, 1980; 
Pond, 1981; Nettl, 1983; Ling, 1997), can be also complex. 

Main contributions 

The main contributions of this paper are: 

• We explain musical structure in children’s folk songs from the perspective of (ir)regularity, by 
observing pitch, interval, implied harmonies, duration, and contour. 

• We develop a novel algorithm, Ir_Reg, to find possible “candidates” with irregular structure in a 
dataset of which no prior musical analysis is available. 

• We show that artificial modelling of human perception of (ir)regularity in children’s folk songs can 
add considerable useful contribution to the understanding of this genre. 

BACKGROUND AND RELATED WORK 

Music is an art of “humanly organized sounds” (Godt, 2005, p. 84). Thus, sounds are not merely randomly 
distributed, but are organized in a specific order: discrete units (sounds) into smaller parts, smaller parts into 
larger parts, up to the level of a musical piece, creating a hierarchical structure, which is one of the 
cornerstones of music theory and music cognition (Levitin & Menon, 2000). A set of permissible and rigid 
rules, defined as musical syntax, defines how this structure has to be organized, covering a wide range of 
different fundamental musical elements (Berezovsky, 2019). 

According to studies (e.g., Cohen, 2003; Marcus, 2003; Cohen & Katz, 2013), musical syntax differs 
not only between different cultures (in non-Western and Western tonal music traditions), but also in different 
styles within Western tonal music (e.g., the Middle Ages, the Renaissance, the period of tonal music, from 
ca. 1600–1918, and the Modern period after 1918), due to the evolution of musical-syntactic rules over time 
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(Meyer, 1989; Klein & Jacobsen, 2014; Vuvan & Hughes, 2019). Changes within these periods are 
considered as compositional choices (Meyer, 1989), rather than as changes in musical language. 

Several empirical studies suggest that musical syntax is represented cognitively (e.g., Bharucha & 
Stoeckig, 1986; Tillmann, Bharucha, & Bigand, 2000) and that observable neural correlates exist (e.g., Janata 
et al., 2002; Koelsch & Siebel, 2005). Manipulating any of the fundamental musical elements in a structure 
impacts the reported feeling of regularity (Rohrmeier, 2011; Pole, 2014; Rohrmeier & Pearce, 2018; Mihelač 
& Povh, 2020a,b) and its identification (Bruner, Wallach, & Galanter, 1959). Patel (2003) argues that, 
following manipulation of the order of elements (parts), a piece of music loses its identity, which accords 
with the processing of sequential information and structure in non-musical domains (Garner, 1974). 

A piece of music is considered to be regular (from the perspective of musical syntax and/or the 
perception of listeners), when a strong structure exists, with periodic dominant musical elements (patterns), 
and there are strong relationships between these patterns (Wu et al., 2000). Conversely, an irregular piece 
contains a non-structured or weakly structured texture, with a small number of detectable patterns with weak 
interrelationships (Kramer, 1988). Klein and Jacobsen (2014) point out that for every compositional rule in 
a given tonal style a complementary regularity is generated for a complementary tonal style: a given 
structure, perceived as syntactically regular in context of one piece, can appear to be irregular in another 
(e.g., frequent endings on dominant triad in folk songs from Serbia, perceived as a syntactically “regular”, 
however as “irregular” in children’s folk songs from the same country, as these songs ends on the tonic triad). 

Findings from various studies outline that a stronger feeling of regularity is perceived when similar 
parts are periodically repeated, either in an “absolute repetition condition”, where parts are repeated 
identically, or in a “relative repetition”, where parts are considered to be conditionally identical (Bader, 
Schröger, & Grimm, 2017) [1].  Relative repetition is important in the development of motifs that form the 
structure of longer pieces (Deliège, 1987; Cambouropoulos, Crawford, & Iliopoulos, 2001). Thus, the 
prevalence of repetition in music, found in all known human cultures, is unsurprising, as is the fact that 
listeners tend to listen repeatedly to familiar musical pieces (Margulis, 2014). Repetition is a fundamental 
characteristic of music, a “design feature” of music (Fitch, 2006), contributing significantly to our 
understanding of music (Schoenberg, Strang, & Stein, 1967). 

Bruner, Wallach, and Galanter (1959) point out that perception of recurrent regularities 
(parts/patterns repeated at pitch or transposed repeated patterns) is impacted either by elements that mask the 
identification of recurrent regularities (e.g., an input-stimulus, which does not conform the recurrent series 
in a sequence) or by the regularity itself, in the case where it “exceeds the memory span” of an observer 
(Bruner, Wallach, & Galanter, 1959, p. 84). The identification of recurrent regularity in a musical structure 
requires that a listener either construct a model to represent this regularity or deploy a model, which they 
have previously constructed. In either case, the success of identification depends on separating recurrent 
regularities from interfering structures. The greater the number of elements interfering the recurrent 
regularities, the more noise is found in the stimulus, and consequently the more difficult is the identification 
of recurrent regularity (Bruner, Wallach, & Galanter, 1959). The perception and identification of recurrent 
regularities and structural particularities in a musical structure depend on how well the musical structure and 
its syntax are internalized in listener. The internalization of music, which can be implicit, during mere 
exposure to music without listening, or explicit, when interacting with music (Pearce & Wiggins, 2012), 
depends on several factors, such as the listener’s musical experience and/or training (Lappe, Steinsträter, & 
Pantev, 2013; Bangert & Altenmüller, 2003). Lu and Vicario (2014) show that human infants and adults 
identify recurrent sound patterns even when exposure to musical sequences is passive. 

No matter how internalization occurs, internal models of the (permissible) musical structures are 
generated and applied whenever listening to novel music (Deliège, 1987; Agres, 2019). If the internal models 
somehow confront the (prescribed) rules of the arrangement of the constituent parts of a musical structure, 
the structure is perceived not only as irregular, but also as more complex and less enjoyable (Sauvé & Pearce 
2019; Mihelač & Povh, 2020b). This is because more effort has to be put into the listening process, as the 
learned musical syntax and its rules have to be adjusted in order to understand the novel structures (Kramer, 
1988). 

Musical genres vary from the perspective of the recurrent regularities in musical structure, and from 
the perspective of musical elements that are emphasized in a repeated at pitch or transposed repeated 
condition, and therefore contributing more or less to the regularity. In some musical genres (e.g., modernist, 
and expressly avant-garde approaches), repetition is avoided (Margulis, 2014), and any feeling of surface 
regularity is deliberately lacking. In some other genres, e.g., in minimalist music, regular structure is achieved 
by (e.g.) emphasizing the rhythm, using repetitive rhythmic patterns (Johnson, 1994). Another example of 
music with recurrence regularities in its structure, employing both repeated at pitch or transposed repeated 
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conditions, is children’s (folk) songs (Jožef-Beg & Mihelač, 2019), to which we return in Section Information 
Dynamics of Music: IDyOM. 

Several approaches have been used to measure (ir)regularity in musical structure, including 
subjective evaluation by listeners (e.g., Deutsch, 1980; Tillmann & Bigand, 1996; Mihelač et al., 2018; 
Mihelač and Povh, 2020b), measurement of neural response (mismatch negativity, MMN) and functional 
magnetic resonance imaging (fMRI) (e.g., Ulanovsky, Las, & Nelken, 2003; Grahn & Rowe, 2012; Yu, Liu, 
& Gao, 2015), or simulation of human perception of (ir)regularity using a computational system (e.g., Hansen 
& Pearce, 2014; Mihelač & Povh, 2020a). The current study uses a computational model to enable a novel 
approach to the examination of (ir)regularity in the musical structure of children’s folk songs. 

 CHILDREN’S FOLK SONGS 

Music “happens to” children all the time, often in singing songs during unrelated activities, and as part of 
education. However, this seems not to have been understood by adults in earlier decades (Campbell, 1998). 
As a result, many children’s folk songs (defined also as traditional songs), contributions by and for children, 
may not have been collected. Such collection could contribute to a better understanding of these songs within 
and between cultures, and of their relation to adult music, within culture. A renewed interest of 
ethnomusicologists, sociologists, educators, and folklorists in children’s folk songs can be seen from 1940 
onward, centering on studies of musical content, on the social and cultural significance of children’s folk 
songs and their relationships to the music of adults, on how these songs contribute to the preservation of a 
particular culture, on how the children’s folk songs are transmitted from one generation to another, and so 
on (e.g., Herzog, 1944; Brailoiu, 1954; Newell, 1963; Blacking, 1973; Nettl & Béhague, 1980; Pond, 1981; 
Nettl, 1983). 

Collections of children’s folk songs, from all over the world, include songs created by adults for 
children, folk songs, as well as songs created by children and passed along to each other. It is sometimes 
extremely difficult to trace the origin of children’s folk songs, as children’s songs created by children are 
often changed and adapted by children in different generations, or even published by adults, due to lack of 
musical skill in children (e.g., how to transcribe the songs). A similar problem occurs with folk songs (to be 
found among children’s songs), as it is not clear whether these songs have been created by children, or by 
adults for children. The single exception is lullabies, existing in nearly every culture, which are created by 
adults for children (Jožef-Beg & Mihelač, 2019). No matter who created them, children’s folk songs exhibit 
many features which also exist also in (other) folk songs, and which are passed from generation to generation 
(as folk songs), via oral tradition. 

Children’s folk songs, for which there is still no clear definition (Sutton-Smith, 1999), are tonally 
and structurally simple, with similar properties to be found all over the world in this genre. The content of 
these songs is close to the child’s world, presumably to make them maximally accessible children (Romet, 
1980; Pond, 1981; Nograšek & Virant Iršič, 2005; Voglar & Nograšek, 2009). Meyer (1989) argues that the 
simplicity (in terms of structure and performance) of the genre can be explained by the influence of 
parameters which are external to music (e.g., ideology, social history, conditions of performance, audience, 
etc.). 

Tonal material in children’s folk songs usually covers a pitch range within a perfect fifth, and 
smaller, descending intervals (seconds and thirds) prevail in the melody (Borota, 2013). Proto-melodies 
including only two tones, a descending third G–E (so–mi), interacting with rhythmic variation, and proto-
melodies using three tones from a pentatonic tetrachord (the third interval with an added fourth) are very 
frequently used (Gortan Carlin, Pace, & Denac, 2014). 

Children’s folk songs are syllabic (that is, they lack melisma), free from ornamentation, with many 
absolutely or relatively repeated motifs, and with minor motivic variations on account of the text (Herzog, 
1944; Ling, 1997). The frequent repetition of content in this genre is due to the audience for which it is 
intended: repeated motifs are more readily comprehended and memorized (Borota, 2013). Duple and 
quadruple meter prevail over triple, and binary rhythms are preferred over ternary. The prevalence of binary 
relations suggests that the fundamental perceptual requirements for such relations also exist in this genre, 
and are intuitively deployed when creating new songs (Fraisse, 1982, explains more about binary and ternary 
relations). 
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INFORMATION DYNAMICS OF MUSIC: IDYOM 

We used the computational perceptual model IDyOM [2] (Information Dynamics of Music: Pearce 2005, 
2018) to measuring the (ir)regularity in children’s folk songs. The model has proven to be an accurate 
predictor of melodic expectancy (Pearce & Wiggins, 2006a; Sauvé & Pearce, 2019), of behavior and neural 
measures (EEG) of melodic expectedness (Pearce et al., 2010; Agres, Abdallah, & Pearce, 2018), of phrase 
boundaries (Pearce, Müllensiefen, & Wiggins 2010a,b). It has been shown to provide a good quantitative 
model of cultural distance (Pearce, 2018). 

N-gram Models 

IDyOM is a computational model [3] of human melodic pitch prediction (Pearce, 2005) based on n-gram 
models. Such models are used effectively in the biological domain, in natural language processing, statistical 
machine learning, artificial intelligence, from 1950 on in music research related tasks (e.g., in machine 
improvisation, music information retrieval, cognitive modelling). An n-gram model is a collection of 
sequences, s, consisting of n symbols (characters/events), each of which is associated with a frequency count. 
The model calculates the probability of a symbol sn based on a history h = s1 ...sn−1, P(sn|h). Where n = 1, a 
unigram model, a zeroth–order model is determining the predictions, meaning that a symbol is independent 
from the previous context (symbols).  

In a bigram model, n = 2, the probability of a symbol depends on just previous one, and so on. When 
using fixed-order n-gram models, low orders may fail to provide a good model of the global structure on the 
distributions, while high orders may not capture enough of the statistical regularity in a sequence. This trade-
off may be addressed by using hierarchical forms of n-gram model (e.g., Wiggins & Sanjekdar, 2019), and 
this is arguably a necessary feature if a model is to describe the structure of sequences that include long-term 
dependencies (Widmer, 2016). However, IDyOM has been shown to capture the structure of melody 
extremely well, suggesting that such long-term dependencies are not significant in this context. A special 
case occurs when a Markov model encounters an unseen symbol, providing an estimated probability of zero 
(Pearce & Wiggins, 2006b; Wiggins, Pearce, & Müllensiefen, 2009). 

These issues are addressed in IDyOM by implementing different strategies, among by extending the 
basic n-gram modelling to a Variable-Order Markov Model (VMM) over a finite alphabet Σ, where the 
conditional probability distributions are combined in a way that reflects the statistics obtained from the 
training data (Begleiter, El-Yaniv, & Yona, 2004). VMMs, in contrast to basic n-gram models, are able to 
capture contexts of different length in a single probabilistic model. 

A special technique for combining the predictions of n-gram models implemented in IDyOM is the 
VMM lossless compression algorithm, Prediction by Partial Match (Cleary & Witten, 1984). In PPM 
algorithms, arithmetic coding is used to compress and decompress symbols in sequences, one symbol at a 
time. Predictive probability distributions P (sn|s1 ...sn − 1) for each context in the model are calculated from 
frequency counts. The algorithm updates the internal model each time a symbol is encoded or decoded to 
improve predictions of a symbol for the remainder of the sequence (Steinruecken, Ghahramani, & MacKay, 
2015). 

PPM* is a version of PPM that exploit contexts of unbounded lengths. The uncertainty of the model 
is minimized during the prediction by estimating the distributions of all models below a variable order bound. 
Higher- and lower-orders predictions are combined, assigning greater weighting to higher-orders than to 
lower-orders, but each prediction by the model is a combination thereof (Pearce & Wiggins, 2006b). In 
IDyOM, predictions are generated from n-gram models of all available orders, using interpolated smoothing, 
with the escape mechanism, Method C, which handles events with zero value counts (Moffat, 1990). 

Viewpoints 

Music is multidimensional, and different musical dimensions (e.g., pitch, time, color, loudness) are not 
independent, but frequently interact (Prince, Thompson, & Schmuckler, 2009). Accordingly, perceptual 
representations of music are also multidimensional (Levitin & Tirovolas, 2009; Shepard, 1982). IDyOM’s 
capacity to observe, to represent, to predict forthcoming events, and to manipulate multidimensional features 
of the musical surface, i.e., the discrete musical events at the note level (Lerdahl & Jackendoff, 1983), is 
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afforded by the multiple viewpoint approach (Conklin, 1990a; Conklin & Witten, 1995) and further 
developed in the IDyOM model (Pearce, 2005). 

A viewpoint allows a particular musical feature of musical events in a sequence to be observed and 
predicted. A musical event e is defined by a finite set of basic attributes, whose properties are specified by 
its type τ (e.g., pitch, duration, color, loudness). Each type τ has a syntactic domain (a set of syntactically 
valid elements), and a semantic domain (a set of possible meanings for elements of that type). When 
modelling a particular type with a viewpoint, a partial function is applied at various orders (see above), 
mapping sequences of events onto elements of type τ. A probability distribution of elements is generated and 
converted into a probability distribution of predictable elements, predicting the likelihood of each possible 
next event in sequence (Pearce, 2005). 

IDyOM offers a range of different viewpoints which can be used in various ways, depending on the 
musical dimension(s) to be examined [4]. Viewpoints can be linked together: for example, viewpoints cpitch 
(chromatic pitch) and cpint (chromatic pitch interval) generate the linked viewpoint cpitch⊗cpint, in which 
an event is projected to pair of values, representing the pitch and interval of that event: thus, the type of that 
viewpoint is the cross-product of the types of cpitch and cpint. This allows the viewpoint system to capture 
the behaviors of viewpoints both individually and in combination, which in turn allows the model to be 
weighted dynamically, according to the strength of the correlations between viewpoints (Pearce, Conklin, & 
Wiggins, 2005; Hedges & Wiggins, 2016; Hedges, 2017). 

Each model in IDyOM is made using a collection of viewpoints. This collection may be selected by 
a user, or by using an automated optimization procedure, in which hill climbing search is used to approximate 
the collection of viewpoints that produces the model with the lowest possible mean information content when 
predicting the data (this measure is sometimes called “cross-entropy”: Conklin & Witten, 1995). This model 
is the one that represents the data with the least overall uncertainty, or which gives the most reliable 
predictions, given the data that is known, on average. 

In the kind of music with which we are concerned, the primary dimensions are pitch and time, and 
these two crucial dimensions are represented in IDyOM with the basic viewpoints cpitch (chromatic pitch), 
dur (duration) and bioi (basic inter-onset interval). From these basic representations, derived viewpoints can 
be calculated [5], following music theoretic rules. For example, cpint represents chromatic pitch interval, 
and cpintfref represents the chromatic pitch interval relative to the tonic of the piece (which must be given). 

To explore (ir)regularity in children’s folk songs in the current study, we used exactly the same 
viewpoints as in the previous study, because they have been shown to be relevant in the capture of 
(ir)regularity (Mihelač & Povh, 2020a). Specifically, we used the basic viewpoint cpitch, derived viewpoints 
cpint and cpintfref, and a linked viewpoint cpitch⊗dur, because currently there is still no general agreement 
as to whether pitch and duration are processed separately or simultaneously (Krumhansl, 2000; Jones & 
Boltz, 1989; Boltz, 1999; Volk, 2016). We also use the derived contour viewpoint. 

Entropy, Information Content and (Ir)regularity in Children’s Folk Songs 

In IDyOM, the internal representations of a musical piece/style are acquired and processed by using statistical 
learning and probabilistic prediction. While observing and analyzing the content in a corpus consisting of 
musical pieces, IDyOM learns about the syntactic structure merely by exposure. On the basis of sequential 
regularities, the likelihood of a forthcoming event is determined from the perspective of the feature which is 
analyzed with a viewpoint or viewpoints (Pearce, 2005, 2018). 

IDyOM simulates a listener’s expectations in music (which is based on the knowledge acquired 
during the entire lifetime) with a long-term model (LTM), which accumulates statistical information about 
musical structure from a large corpus. As listeners are sensitive to repeated patterns in an on-going listening 
experience, a second, short-term model (STM) is also used, in which the information about the musical 
structure of the current piece is learned dynamically and incrementally (Pearce, 2005, 2018). LTM and STM 
predictions are then combined, and it has been shown that better prediction performance is achieved by 
combining LTM and STM dynamically (Conklin, 1990a; Pearce & Wiggins, 2004, 2006b; Pearce, 2005). 

In IDyOM, two information-theoretic measures, entropy, and information content (MacKay 2003), 
are used for the examination of the musical content and for the prediction of events. Although these measures 
are fundamentally related, and have been used synonymously by Shannon and Weaver (1949), they can be 
considered as usefully different. Shannon’s entropy, or simply entropy, related to the idea of entropy in 
physics, is a measure of uncertainty. It is the average number of bits, required to transmit/represent the 
statistical uncertainty about the character of an event, randomly selected from a probability distribution.  
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Less uncertainty is experienced in case when one event dominates in a probability distribution. 
Larger or maximum entropy is expected when no event dominates another, for example in an equal or 
approximately equal probability distribution. Entropy, as defined by Shannon (2001), and shown in equation 
1, is used as baseline model for quantifying the uncertainty in the prediction of a musical event before it is 
heard, using a specific viewpoint. Hansen and Pearce (2014) provide evidence that entropy is correlated with 
perceived uncertainty; mathematically, it is related to the balance of likelihoods in a distribution: a uniform 
distribution has maximum entropy (because there is no information in the distribution) while zero (i.e., 
minimum) entropy entails that exactly one value of the distribution has probability 1,  

                                        𝐻𝐻(𝑒𝑒𝑖𝑖) =  −  � 𝑝𝑝𝑥𝑥
𝑥𝑥∈𝑋𝑋𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙2(𝑝𝑝𝑥𝑥)                                                                                        (1) 

where Xi is the set of all possible continuations of a given musical sequence after event ei (in our case, the 
alphabet of a viewpoint) and pi is the probability of event ei. 

The idea behind quantifying information content (MacKay, 2003), which is significant from the 
perspective of compressibility (Bell, Cleary, & Witten, 1990), is to estimate how unexpected an event is in 
the context in which it happens. Thus, information content is a measure of unexpectedness (sometimes called 
“surprisal”) of an event which actually appears in the sequence. For a discrete event ei, it can be calculated 
as shown in equation 2. Rare events in context have a low probability, are more surprising, and have a higher 
information content. Frequent events in context have a high probability and low information content, and so 
are less surprising. If the probability of an event is 1 (when there is no surprise), the information content is 
zero. 

 𝐼𝐼𝐼𝐼(𝑒𝑒𝑖𝑖) =  − 𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖 (2) 

where pi is the probability of event ei. In the rest of this subsection, we present, as an example, the information 
content (unexpectedness) and entropy (uncertainty) by exploring the viewpoint cpitch in three children’s folk 
songs, selected from the much larger dataset used in this study. Note that for each event, ei (in our case a tone 
in a sequence/melody), the information content and entropy is calculated from a probability distribution.  

In Figure 1, the Turkish children’s folk song, Cumhuriyet Çocuklarıyız, is presented. It consists of 
78 events, in which motifs, hereafter defined as patterns (p), are denoted by p1, p2, and p3. From the 
perspective of pitch span (within a perfect fifth), rhythm, and meter, the song is simple. Furthermore, the 
song has a clear and understandable musical syntax, and with a structure that is strong, consisting of three 
dominant and often at pitch repeated patterns with substantial relationships, as p2 always follows p1, and p3 

follows p2. Below we introduce algorithm Ir_Reg to classify songs into regular and irregular based on the 
mean values of the viewpoints computed by IDyOM. This algorithm classifies this song (Cumhuriyet 
Çocuklarıyız) as “regular” and therefore complies with our observations. 
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Figure 1. An example of a regular, structured melody. The Turkish children’s folk song Cumhuriyet 
Çocuklarıyız, consists of three at pitch repeated patterns (the patterns are marked with p), which are repeated 
throughout the entire song. From the perspective of their frequency of appearance, these patterns can be 
considered as “recurrent”, “dominant”, and the melody appears to be “regular”. 

In Table 1, the information content (IC), and entropy (E), obtained for the viewpoint cpitch, and 
assigned to each event in pattern p1 is shown. The pattern p1 appears at the beginning of the song (from e1 to 
e4), and is repeated four times, in e25–28, e35–38, e59–62, and e69–72. The order of the events (from e1 to e4) is 
always the same, which means, that each repeated version of pattern p1 starts with the same note presented 
as event e1, and afterwards as e25, e35, e59, and e69 in the repeated patterns. 

Table 1: Information content (IC) and entropy (E) defined for each event (from the distribution at that point 
in the sequence), for the pattern p1 in the Turkish song Cumhuriyet Çocuklarıyız.  
 

Event 1st (IC/E) Event  2nd (IC/E) Event  3rd (IC/E) Event  4th (IC/E)  Event  5th (IC/E) 
e1 3.62/3.87 e25 3.96/2.56 e35 2.90/2.50 e59 1.24/2.38 e69 1.05/2.20 
e2 1.91/3.60 e26 2.44/2.76 e36 2.88/1.80 e60 1.05/2.29 e70 1.04/2.20 
e3 2.99/3.37 e27 1.66/2.62 e37 2.05/2.42 e61 1.41/2.29 e71 1.43/2.30 
e4 0.56/1.62 e28 0.51/1.66 e38 0.44/1.52 e62 0.37/1.38 e72 0.33/1.27 

 
Note. The IC values in the first and second appearance of this pattern are more or less similar, but then 
decrease in the third, fourth, and fifth appearance. 

Tables 2 and 3 present the IC and E values for pattern p2 and p3, respectively. As in pattern p1, the 
events in these two patterns always appear in the same order in the repeated versions. A tendency to decrease 
is visible in the IC of the events in all three patterns (depicted also in Figure 2), from their first to their last 
(repeated) appearance. 

 
 

Table 2: Information content (IC) and entropy (E) assigned to each event in the pattern p2 in the Turkish song 
Cumhuriyet Çocuklarıyız.  
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Event 1st (IC/E) Event 2nd IC/E) Event 3rd (IC/E) Event 4th (IC/E) Event 5th (IC/E) 
e5 1.42/2.13 e29 1.20/2.09 e39 0.63/1.62 e63 0.62/1.65 e73 0.45/1.37 
e6 6.89/1.51 e30 2.03/2.44 e40 1.85/2.05 e64 0.69/1.82 e74 0.57/1.68 
e7 2.35/3.02 e31 1.74/2.47 e41 0.97/2.12 e65 0.73/1.87 e75 0.59/1.68 
e8 2.16/2.79 e32 1.09/2.35 e42 0.74/1.96 e66 0.59/1.74 e76 0.49/1.57 
e9 1.81/2.14 e33 0.98/2.07 e43 0.68/1.78 e67 0.54/1.58 e77 0.45/1.42 
e10 6.16/2.45 e34 1.67/2.54 e44 0.89/2.10 e68 0.66/1.83 e78 0.53/1.63 

 

Note. The IC values and entropy values in this pattern decrease after its first appearance in each further 
repetition. 
 
Table 3: Information content (IC) and entropy (E) assigned to each event in the pattern p3 in the Turkish 
song Cumhuriyet Çocuklarıyız.  

 
Event 1st IC/E) Event 2nd IC/E) Event 3rd (IC/E) Event 4th (IC/E) 
e11 4.13/2.94 e18 4.78/2.54 e45 2.03/2.41 e52 1.56/2.46 
e12 1.65/2.67 e19 1.81/2.72 e46 1.03/2.19 e53 0.92/2.17 
e13 1.51/2.33 e20 1.28/2.45 e47 0.58/1.69 e54 0.43/1.45 
e14 2.16/1.97 e21 1.46/2.34 e48 0.84/1.98 e55 0.60/1.75 
e15 1.63/2.04 e22 1.37/2.04 e49 0.80/1.82 e56 0.63/1.70 
e16 3.74/2.06 e23 2.28/2.39 e50 0.89/2.06 e57 0.64/1.79 
e17 2.53/2.54 e24 1.53/2.52 e51 0.88/2.08 e58 0.67/1.83 
 

Note. The IC values in this pattern (exception is the second repetition compared to the first appearance) 
decreases, as in pattern p2, with each new repetition. 
 

 

Figure 2. Information content (IC) and entropy (E) for the viewpoint cpitch in the Turkish children’s folk 
song Cumhuriyet Çocuklarıyız. Both values decrease through this song. The peaks in the graph (event e6, 
e10, e18, and e25), correspond with notes with low-probability. 
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The second song, Schneeglöggli, which is from Switzerland (see Figure 3) consists of 50 events and 11 
patterns, again labeled as pi.  

 

 
 

Figure 3. An example of a structure with weak relationships between the patterns (motifs). This Swiss 
children’s folk song Schneeglöggli has even 11 motifs, and none of them is dominant, repeated at pitch or 
transposed repeated, therefore giving the impression of an irregular, non-structured melody. 

Ir_Reg classifies this song as “irregular”. It has a weak structure, without any dominant (repeated at 
pitch or transposed repeated) patterns, and it has large intervals (e.g., event e35–36) and no special relations 
between the patterns. The information content (IC) and entropy (E) obtained for the viewpoint cpitch are 
presented for each event in this song in Figure 3 (in the musical score, in the boxed text IC and E) and 
depicted also in Figure 4. We can see clearly very high IC values in each of the 11 patterns, giving the 
impression of highly unexpected and complex musical content. 
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Figure 4. Information content (IC) and entropy (E) obtained for the viewpoint cpitch in the Swiss children’s 
song Schneeglöggli. The entropy values (E) are slightly decreasing. The values for the information content 
remain very high, showing that the events in this song are highly unexpected. 
 
The third song, Doidas andam as galinhas, from Portugal (Figure 5), has been classified by Ir Reg as 
“neutral”.  

 
 

Figure 5. An example with transposed repeated patterns in the Portuguese children’s folk song Doidas andam 
as galinhas. 

 
The song consists of 48 events with three distinct patterns (p1, p2, p3), and three transposed repeated 

patterns, of which the pattern t1 is a transposed repetition of pattern p1, t2 a transposed repetition of pattern 
p2, and pattern t3, a transposed repetition of pattern p3. As can be seen in Figures 5 and 6, the information 
content of the patterns t1, t2, and t3 suggests that the content of these patterns is perceived as unexpected, even 
though they are a transposed repetition of the three main patterns. 
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Figure 6. Information content (IC) and entropy (E) obtained for the viewpoint cpitch in the Portugal 
children’s song Doidas andam as galinhas. 

Table 4 presents the mean values for information content and entropy (the mean value across all the 
events in a particular song), for each viewpoint (ten variables) and the three example songs separately. The 
mean values of IC and E are taken as a measure of (ir)regularity: songs with a high IC and E, are classified 
as more irregular than those with low values. 

 
 
 
Table 4  
 
Average values for information content (IC) and entropy (E), for each viewpoint (ten variables in total), 
computed by IDyOM on the three presented songs. 
 

Viewpoint  Cumhuriyet  
Çocuklarıyız 

Doidas andam 
  as galinhas 

Schneeglöggli 

 (regular) (neutral) (irregular) 

IC_cpitch 1.36 2.46 4.40 
E_cpitch 1.99 2.49 3.37 
IC_cpint 1.70 2.12 3.73 
E_cpint 2.12 2.41 3.03 
IC_cpintfref 2.05 3.15 3.83 
E_cpintfref 2.61 3.18 3.68 
IC_cpitch⊗dur 1.46 2.81 4.80 
E_cpitch⊗dur 1.78 2.41 3.24 
IC_contour 4.15 4.02 4.96 
E_contour 3.68 3.72 3.90 

 
 
 
 

THE DETECTION AND PREDICTION OF (IR)REGULARITY IN 
CHILDREN’S FOLK SONGS BY IR_REG 

Data 

The data used in this paper consists of 736 monophonic children’s folk songs from 22 European countries 
(see Table 5), and is available at https://github.com/LMihel/LMihel.github.io. The decision to include Russia 
in this data is geographical (about 23% of the western part of Russia can be considered as a part of Europe), 
and historical, political, and cultural, due to the connection between former and present Russia with Europe 
(Graney, 2019). Turkey has been added to this data because of the fact that a small part (roughly 3%) is 
considered from the geographic perspective as Europe, and because of a shared historical, political, and 
cultural background with different European countries during the Ottoman Empire (Hurewitz, 1961; 
Kostopoulou, 2016). 

A selection of children’s folk songs from Germany was obtained from the Essen Folksong Collection 
(Schaffrath, 1995). The selection of Dutch children’s folk songs has been obtained from the Meertens Tune 
Collection (The Meertens Tune Collections, 2019). Children’s folk songs from 20 other countries have been 
collected by the authors from various books, containing traditional (children’s) folk songs, provided by the 
courtesy of national/school libraries from these countries.  

From these 20 countries, we selected only children’s folk songs, which were included either in the 
formal music syllabus or in song books used as additional educational material in kindergartens and primary 
schools. Furthermore, wherever possible, we have included children’s folk songs whose origin is in a certain 

https://github.com/LMihel/LMihel.github.io
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country (although the same song can often be found in another country, even in European countries which 
are geographically widely separated e.g., a “wanderer melody” found in the Czech song Kočka leze dírou, 
pes oknem, and in the Slovenian song Čuk se je oženil). 

 

Table 5  
 
Countries and number of children’s folk songs used in analyzing the (ir)regularity. The total is 736 songs. 

 

Country Num. 
of songs 

Country    Num. 
of songs 

Bulgaria 18 Croatia 16 
Denmark 15 France 71 
Germany 124 Great Britain 38 
Greece 26 Hungary 27 
Italy 22 Latvia 23 
Netherlands 58 Norway 23 
Poland 22 Portugal 27 
Romania 18 Russia 21 
Serbia 13 Slovenia 44 
Spain 54 Sweden 29 
Switzerland 23 Turkey 24 

 

 Algorithm Ir Reg 

We now describe our algorithm Ir_Reg. Ir_Reg takes as an input two sets of songs: the entire data set D, a 
subset  𝐷𝐷� of D, and a set V of viewpoints that we want to analyze. Firstly, Ir_Reg computes by IDyOM 
information content and entropy for all viewpoints from V, for all songs from 𝐷𝐷 � , using the entire data set D. 
Next, Ir_Reg calculates the maximum values of these viewpoints across the dataset 𝐷𝐷 � . Finally, for each song 
from the subset 𝐷𝐷� the algorithm counts the number of viewpoints above the 75 % of the maximum value of 
the viewpoint (upper threshold) or below the 25 % of the maximum value of the viewpoint (lower threshold). 
The Ir_Reg algorithm is actually defined for general set of information content and entropy viewpoints V, 
but in this paper, it was applied with V consisting of {cpitch, cpint, cpintfref, cpitch⊗dur, and contour}. 

If a given song has at least 5 values (entropy or information content) above the upper threshold it is 
classified as irregular. Otherwise, if it has at least 5 values below the lower threshold, it is classified as 
regular. If neither of these cases happens, it is labeled as unclassified. The number 5 in the algorithm was 
determined empirically. Ir_Reg is specified below as Algorithm 1. 
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Results 

In order to analyze the (ir)regularity of the musical structure in our data, we firstly analyzed the entire data 
(736 children’s folk songs) by examining the information content and entropy of each of the set of viewpoints 
V, as explained above.  In other words, we ran Ir_Reg with input data sets 𝐷𝐷 (the entire data set) and 𝐷𝐷� = 𝐷𝐷. 
For each song from D we computed by IDyOM the mean values of IC_cpitch, E_cpitch, IC_cpint, E_pint, 
IC_cpintfref, E_cpintfref, IC_cpitch⊗dur, E_cpitch⊗dur, IC_contour, and E_contour.  

Then we classified the songs as regular, irregular, or unclassified using the global threshold values 
(i.e., the values computed across D) and counted the numbers of songs that were classified as regular, 
irregular, or unclassified, for each country separately. These totals are presented in Table 6 and visualized 
on Figure 7. Regarding the relative frequencies, the most irregular in the structure are the songs from Norway, 
since 17 out of 23 (74 %) are classified as irregular. The most regular songs are the songs from Serbia, where 
11 songs out of 13 (85 %) were labelled as regular. Other countries with no regular songs in our dataset are 
Switzerland and Great Britain, while the countries with no irregular songs are Croatia, Hungary, Portugal, 
Romania, and Turkey. 
 
Table 6: Number of irregular, regular, and unclassified children’s folk songs found in the dataset of 736 
songs. 
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Country Irregular Regular Unclassified Country Irregular Regular Unclassified 
Bulgaria 2 3 13 Croatia 0 12 4 
Denmark 4 2 9 France 16 9 46 
Germany 16 28 80 Great Britain  23 0 15 
Greece 3 10 13 Hungary 0 12 15 
Italy 3 6 13 Latvia 2 4 17 
Netherlands 6 14 38 Norway 17 0 6 
Poland 1 5 16 Portugal 0 8 19 
Romania 0 5 13 Russia 4 5 12 
Serbia 0 11 2 Slovenia 8 7 29 
Spain 16 13 25 Sweden 17 2 10 
Switzerland 18 0 5 Turkey 0 16 8 

 

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Irregular Regular Unclassified

 

Figure 7. The percentage of irregular, regular, and unclassified children’s folk songs in each country. Total 
number of children’s folk songs is 736. 
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Table 7: Upper (75%) and lower (25%) threshold for each viewpoint, and mean values for all 10 viewpoints, 
separately for regular, irregular, and unclassified children’s folk songs, computed over the entire dataset of 
736 songs. 

Irregular Regular Unclassified Treshold Treshold 

Viewpoint (mean) (mean) (mean) (25%) (75%) 
IC_cpitch 3.06 1.84 2.37 2.00 2.72 
E_cpitch 2.79 2.41 2.61 2.45 2.75 
IC_cpint 3.07 1.97 2.49 2.13 2.82 
E_cpint 2.66 2.41 2.57 2.40 2.71 
IC_cpintfref 3.45 2.61 3.04 2.71 3.73 
E_cpintfref 3.39 3.15 3.30 3.05 3.57 
IC_cpitch⊗dur 3.17 1.77 2.41 1.93 2.87 
E_cpitch⊗dur 2.71 2.18 2.43 2.21 2.63 
IC_contour 4.23 3.63 3.86 3.51 4.27 
E_contour 3.60 3.48 3.50 3.32 3.73 

We also performed principal component analysis (PCA) with the same variables. Figure 8 shows 
irregular, regular and unclassified children’s folk songs, projected to the 2-dimensional subspace spanned by 
the first two principal components, of which the first explains 54,7% variance, and the second explains 18.4% 
of total variance. We can actually observe that these three groups could be well separated also using only the 
first principal component.   

Table 8 contains data about importance of the principal components. We can see that we need 5 
principal components to explain 94 % of variability (conventional goal in PCA is 95%), which reveals that 
the data has 5 important dimensions.  

Figure 8. Visualization of irregular, regular, and unclassified children’s folk songs with the first two 
principal components.  
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Table 8: Results of Principal component analysis (PCA) of viewpoints computed over the complete dataset 
of 736 songs 
 

   Component PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 
Standard deviation 2.34 1.36 1.01 0.82 0.63 0.42 0.41 0.33 0.28 0.25 
Proportion of Variance 0.55 0.18 0.10 0.07 0.04 0.02 0.02 0.01 0.01 0.01 
Cumulative   
Proportion 

0.55 0.73 0.83 0.90 0.94 0.96 0.97 0.99 0.99 1.00 

 
 

Secondly, we analyzed the (ir)regularity of the musical structure in data from each 
country separately by examining the information content and entropy with the same viewpoints, and by 
applying our algorithm to our data sets of songs from each country. Therefore, we ran Ir_Reg for each country 
separately with the inputs D – the entire dataset, and 𝐷𝐷 � – the dataset of songs from particular country. More 
precisely, we took the values of viewpoints, computed across the whole data set D, but the threshold values 
were computed using only the viewpoints from the songs of particular country 𝐷𝐷 � . These threshold values 
were basis for classification of songs from 𝐷𝐷 � . This gave as a new classification, presented in Table 9. In 
total, from 736 children’s folk songs, we detected with this approach 158 irregular and 173 regular children’s 
folk songs. 
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Table 9:  Number of irregular, regular, and unclassified children’s folk songs found in 736 songs, examined 
in each country separately. 

 
Country Irregular Regular Unclassified Country Irregular Regular Unclassified 
Bulgaria 5 3 10 Croatia 4 4 8 
Denmark 3 4 8 France 15 16 40 
Germany 29 27 68 Great Britain  7 10 21 
Greece 5 8 13 Hungary 6 5 16 
Italy 6 7 9 Latvia 3 4 16 
Netherlands 12 16 30 Norway 5 4 14 
Poland 3 5 14 Portugal 3 7 17 
Romania 4 5 9 Russia 3 6 12 
Serbia 3 3 7 Slovenia 11 10 23 
Spain 11 11 32 Sweden 7 8 14 
Switzerland 7 5 11 Turkey 6 5 13 

 
 
In these 331 children’s folk songs, we analyzed, with two additional and independent musical 

experts, patterns (motifs) by using the musical score. Each pattern (p), either repeated at pitch or transposed 
repeated (t), was firstly annotated in the musical score. Secondly, based on the frequency distribution of 
patterns in each song, we computed the entropy of unigrams for each song (Mihelač & Povh, 2020b give 
details about computing the unigrams). The Welch two-samples t-test was used to compare the difference in 
mean values of unigrams between the irregular and regular children’s folk songs. The difference is 
statistically significant, (p < 6.651e-11), i.e. the mean value of unigram was significantly smaller on the set 
of on regular children’s folk songs, mainly because the transposed repeated patterns were more recurrent in 
regular children’s folk songs compared to irregular. 

A chi-square test of independence was performed to examine the relation between transposed 
repeated patterns (t) and the (ir)regularity in musical structure. More precisely, we considered only the 
classified songs (i.e., regular, and irregular) and have introduced new binary variable having value 1 if the 
song contained transposed repeated patterns (t) and 0 otherwise. The relation between these two variables 
was significant, X2(1, N=331) = 27.09, p = 1.942e-07, which means that transposed repeated patterns were 
more frequent in the irregular children’s folk songs (in 80 songs out from 158) than in regular one (only in 
39 songs out from 173). 

Implied harmony was examined with IC_cpintfref and E_cpintfref (Table 7) and analyzed in musical 
score. In Table 7, we see that no significant differences were found between irregular and regular children 
folk songs. The majority of the children’s folk songs start with the tonic triad as its first chord, and ends with 
the tonic triad. However, dominant triads were found in some songs (0.68%), even subdominant triads 
(0.41%) at the beginning of the songs, and dominant (1.49%), and subdominant (0.13%) triads in the endings 
(Table 10). 
 
Table 10: Dominant and subdominant triads found at the beginning and end of 736 children folk songs.  

 
Beginning of songs Ending of songs 

 dominant triad subdominant triad dominant triad subdominant triad  
0.68 % 0.41 % 1.49 % 0.13 % 

 
 

 DISCUSSION AND CONCLUSIONS 

 
A plausible explanation for a higher or lower presence of (ir)regular songs in some countries could be that 
children’s folk songs exist in each of the 22 countries, whose origin can be traced to folk songs. Folk songs 
are a true amalgam of different historical, cultural, and musical processes (Golež Kaučič, 2003), carrying 
thus all the specificities of a (musical) culture from a particular country. This means that all the diversity 
found in folk songs, passed to the children population due to its (suitable) content, presumably without 
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simplifying the musical structure, either from the perspective of musical dimensions, or musical elements, 
can be found also in children’s folk songs. This could clarify either a very high or low information content 
and entropy found in children’s folk songs in some countries. 

According to our results, frequency of repeated patterns contributes to a more regular musical 
structure and to a stronger feeling of regularity, if the patterns are repeated at pitch, which is in accordance 
with the findings from Bader, Schröger, and Grimm (2017), although even transposed repeated forms (in our 
case transposed repeated patterns) can be perceived as different, depending on the context which precede or 
follow it (Margulis, 2014, p. 27–54). Musical structure is perceived as more regular, if the recurrence of a 
pattern is not “masked” (see more about it in the study from Bruner, Wallach, & Galanter, 1959), as it was 
the case with the transposed repeated patterns found in irregular and regular children’s folk songs.  

It seems that the perception of these relative repeated patterns is affected somehow by the duration 
of children’s folk songs, which are approximately 8–12 bars long. If the children’s folk songs were longer, 
the transposed repeated patterns could have a more significant role in the identification of these patterns as 
a transposed repetition of patterns repeated at pitch, and contribute more significantly to the regularity of the 
musical structure (more about the significance of repetition in longer musical pieces in the studies from 
Deliège, 1987; Cambouropoulos, Crawford, & Iliopoulos, 2001). As the duration of a children’s folk songs 
is on average short, then the mixture of patterns repeated at pitch and transposed repeated patterns in a very 
short time period is actually interfering with the recurrent regularities, i.e., it is not contributing to a more 
regular structure, but rather to more noise, which is in accordance with the findings of Bruner, Wallach, & 
Galanter (1959). 

The principal component analysis (PCA) performed on all the variables (IC_cpitch, E_cpitch, 
IC_cpint, E_cpint, IC_cpintfref, E_cpintfref, IC_cpitch⊗dur, E_cpitch⊗dur, IC_contour, E_contour), has 
shown that regular and irregular musical songs were linearly separated into a 2-dimensional subspace 
spanned by the first two principal components. The salience of pitch in the perception of (ir)regular structure, 
can be understood, that each pitch, even when being acoustically identical to another one, can be perceived 
as different, depending on the context, as each pitch can differ in its tonal function, i.e., each pitch can have 
assigned a unique function in two different tonalities (Krumhansl & Shepard, 1979). 

Small pitch intervals are prevailing in children’s folk songs, as also in a considerable number of folk 
songs across the world (Huron, 2001; Von Hippel, 2000), of which some, included in our data, were found 
to exist as children’s folk songs in different countries. Some of these folk/children’s folk songs in the data 
were assigned as extremely irregular and complex (especially the songs from Great Britain, Norway, and 
Switzerland, according to our results), not only because of highly unexpected distributions of pitch in the 
melody, but also because of the use of large leaps (intervals) between successive notes. Thus, not only pitch, 
but also pitch intervals are affecting the regularity of a musical structure, which was found also in the study 
of Beauvois (2007). 

Differences in rhythm (duration) were found between irregular and regular children’s folk songs 
(see Table 7). The regularity in metrical structure, is according to different studies affected by the 
absence/presence of a regular beat, which groups different rhythms in time intervals (Bouwer et al., 2018). 
However, with the exception of some children’s folk songs found in e.g., Bulgaria, Romania and Turkey, the 
in-depth analysis of the musical scores showed that rhythm, based on recurring pulse/meter was found more 
or less in the majority of children’s folk songs included in our data. Recurrent pulse/meter has obviously 
contributed to a more regular musical structure, in which the events are more predictable, which is also in 
accordance with the findings in the study of Lappe, Steinsträter, & Pantev (2013). 

No significant impact on regularity was found in the analysis of (implied) harmony examined with 
IC_cpintfref and E_cpintfref (Table 7). This result was expected, as basic harmonic progressions are prevalent 
in the melodies, either in irregular or regular children’s folk songs (e.g., progressions I-V-I, I-IV-V-I, I-IV-
I, ...). The use of dominant/subdominant functions and triads at the beginning and end of songs is to be 
understood more as a rare exception rather than a rule in children’s folk songs. Furthermore, three basic 
harmonic functions (tonic, dominant, subdominant) are predominantly found in children’s folk songs 
(Berget, 2017), suggesting that harmony, as a secondary parameter, is in this genre established and heavily 
dependable on the syntactical constraints and rules formed by the primary parameter pitch (see more about 
primary and secondary parameters in Meyer, 1989, and Bauer, 2001). 

Contour has not been shown to affect the regularity of the musical structure in children’s folk songs 
(Table 7). A plausible explanation could be that the information about contour is present in other viewpoints 
(for example in cpitch and cpint). Furthermore, in the majority of children’s folk songs, ascending and 
descending directions of the melodies (arch-like structure) have been found. This is probably related to the 
origins of some children’s folk songs traced to folk songs with an arch-like melody. The same tendency of 
ascending-descending (convex) melodies has been found in a computerized analysis from Huron (1996) in 
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40% of approximately 10,000 phrases (5–11 notes in length), and also in combined phrases (two phrases 
together, with a low midpoint, producing an overall convex shape) in over 6000 European folk songs. 
Furthermore, contour has proven to be a powerful identifying factor in melodic recognition, and to contribute 
to a better memorization of melodies (Dowling, 1978; Bartlett & Dowling, 1980; Trainor & Trehub, 1993; 
Trehub, Bull, & Thorpe, 1984), which could also explain the prevailing arch-shaped contour in children’s 
folk songs, which is more or less predictable and probably contributing to a higher feeling of regularity. 

In this study, we have shown that irregularity exists in children’s folk songs, and that this genre can 
be complex. Future research with additional examples of children’s folk songs in each country, and with 
more musical feature variables in defining (ir)regular songs could extend the explanations of (ir)regularity. 
An in-depth analysis of the origin of children’s folk songs would certainly contribute to the understanding 
of (ir)regularities found in the musical structure of this genre, and why irregular structure is more frequently 
found in some European countries than in other European countries. 

Acknowledgements 

This research work was supported by Šolski center Novo Mesto, Slovenia, by the Slovenian Research 
Agency (ARRS) through the research project J1-8155, and partially supported by a sabbatical grant from 
IJS. 
 

End Notes 

[1] An example is the transposition of a fragment where only the pitch intervals in a part are repeated, while 
the entire fragment is shifted in pitch. 
[2] IDyOM may be downloaded from https://github.com/mtpearce/idyom/wiki. 
[3] The word “model” has been used in this paper as a term for the IDyOM ‘theory-and-system’, and also 
for some of its components (models of data). 
[4] http://mtpearce.github.io/idyom/ gives an exhaustive list. 
[5] A full list of the available viewpoints is given on the IDyOM website, http://mtpearce.github.io/idyom/. 
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