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ABSTRACT: We investigate whether pitch sequences in non-tonal music can be 
modeled by an information-theoretic approach using algorithmically-generated melodic 
sequences, made according to 12-tone serial principles, as the training corpus. This is 
potentially useful, because symbolic corpora of non-tonal music are not readily 
available. A non-tonal corpus of serially-composed melodies was constructed 
algorithmically using classic principles of 12-tone music, including prime, inversion, 
retrograde and retrograde inversion transforms. A similar algorithm generated a tonal 
melodic corpus of tonal transformations, in each case based on a novel tonal melody 
and expressed in alternating major keys. A cognitive model of auditory expectation 
(IDyOM) was used first to analyze the sequential pitch structure of the corpora, in 
some cases with pre-training on established tonal folk-song corpora (Essen, Schaffrath, 
1995). The two algorithmic corpora can be distinguished in terms of their information 
content, and they were quite different from random corpora and from the folk-song 
corpus. We then demonstrate that the algorithmic serial corpora can assist modeling of 
canonical non-tonal compositions by Webern and Schoenberg, and also non-tonal 
segments of improvisations by skilled musicians. Separately, we developed the process 
of algorithmic melody composition into a software system (the Serial Collaborator) 
capable of generating multi-stranded serial keyboard music. Corpora of such keyboard 
compositions based either on the non-tonal or the tonal melodic corpora were generated 
and assessed for their information-theoretic modeling properties.  
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INTRODUCTION 
 

PROBABILISTIC analyses of music, using both Bayesian and information-theoretic approaches, have had 
much success in the prediction of key centres, and in the psychological modeling of pitch and harmonic 
expectation (reviewed by Huron, 2006; Pearce & Wiggins, 2012; Temperley, 2007). Most of this work has 
been done with Western tonal music, though some contributions have considered other modal styles, such 
as Indian music (Chordia et al., 2011). These studies use corpora of symbolic representations of the music 
under study to train the modeling algorithms. Our purpose here was to extend such models to non-tonal 
Western music. Since as far as we are aware no symbolically-encoded corpora of non-tonal music are 
available, we constructed one by an algorithmic procedure that uses classic principles of serialist 
composition. Our research question is whether such an algorithmically generated corpus proves useful in 
probabilistic modelling of pitch prediction. We address this question by training models on algorithmically 
generated corpora and using them to predict the pitches in canonical non-tonal works by Webern and 
Schoenberg and non-tonal keyboard improvisations.  
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Tonal and atonal music are primarily distinguished by whether or not particular pitches assume 
central prominence within the structure of a pitch hierarchy. Consistent with music compositional theory, 
pitch hierarchies are perceptible in both tonal and atonal music, as reflected for example in the degree to 
which a pitch is perceived to ‘fit’ with what has preceded it. Single pitch centres are prominent in tonal 
music, but not in atonal works, even though a pitch hierarchy still exists there (Dibben, 1994; Krumhansl, 
1990). Serial composition, pioneered by Schoenberg and associates (c. 1908-1950), produces atonal music 
by a rigorous formalized organization of pitches. There is a ‘prime’ ordered series of pitches using all 12-
pitch classes of the chromatic octave without repetition (the ‘tone row’, an originating source melody or 
motive), and commonly compositions are built from a single row. The row may be inverted, and both prime 
and inverse may be used forward and in reverse (retrograde) to form P, I, RP, and RI respectively. Each 
row transform may also be transposed as a whole, and the order in which the notes of the row or transform 
appear is sequential and conserved: local note group repetitions are not used in our application of this 
process (see Brindle, 1966; Forte, 1973; 1978) for discussion of the development and practical use of serial 
composition).  

Here we deal mainly with ‘monodic’ (single strand) melodic materials, but polyphonic 
compositions (where multiple pitches can sound simultaneously) may be constructed by applying the serial 
processes vertically (across a set of different strands) and/or horizontally, with a separate serial process for 
each strand (although many other techniques exist). The frequency pattern of different pitch classes in 
serial music is consequently more homogeneous than in tonal music (e.g. Huron, 2006). As Huron noted, 
Schoenberg sought to be ‘contra-tonal’ in most of his serial compositions, and it has also been found that 
Schoenberg and other serialist composers had a statistical preference for symmetrical tone rows (Hunter & 
von Hippel, 2003).  

Subsequent to the establishment of serialism, there was a move towards more flexible use of pitch 
and tonality, so that transparent tonality, multiple coexistent tonalities (polytonality) and ‘post-tonal’ (c.f. 
(Chew, 2005) styles followed. Terminology is awkward: ‘post-tonal’ has a chronological implication; and 
other terms have been used in contradictory ways. So we here refer broadly to non-tonal music, implying 
both a pure extreme with no tonal centres (as in some sections of serial compositions), and the common 
situation in which tonal centres appear intermittently but there is little long-term tonal organization. Thus 
there is a continuum from strongly tonal music to strongly atonal music, allowing for intermediate points in 
between. Even rigorous serialism rarely avoids the possible transient implication of tonal centres, and Berg 
in particular actively exploited this. Perception of atonal music forms a natural extension to that of tonal 
music: for example, the perceived segmentation and affective impact of parts of two (tonal) piano sonatas 
by Beethoven were not obliterated by conversion of their pitch structure into atonal sequences (Lalitte et 
al., 2009).  

APPROACH 

In order to be able to develop information theoretic models for non-tonal music, we first algorithmically 
composed a corpus of non-tonal monodic melodic pitch structures derived from serial compositional 
procedures, to test whether it can aid such predictive information-theoretic modeling. Existing information-
theoretic models of music have focused on monodic single-stranded melodic music (e.g., Conklin & 
Witten, 1995; Pearce, 2005), due to the significant representational challenges caused by streaming 
(Bregman, 1990) in polyphonic music. Besides the monodic non-tonal corpus, we also constructed a 
corresponding diatonic (tonal) monodic corpus of major tonality melodic pitch structures based on closely 
similar serial compositional principles, as a point of comparison. If the serial organization principles are 
themselves important predictors of pitch sequencing, then even the resulting tonal melody corpus might 
have predictive power, particularly for non-tonal music. We assess the utility of the corpora in predicting 
the pitch structure of non-tonal music by Webern and Schoenberg, and non-tonal keyboard improvisations.  

In what follows, we focus initially on the monodic corpora. Then to extend the approach to 
polyphonic music, we apply the algorithmic Serial Collaborator (Dean, 2014), which generates multi-
strand piano music again using serial principles, and is used in performance (recordings are available with 
the cited paper, and elsewhere). Such algorithmic polyphonic music was created both from non-tonal and 
tonal melodic streams, using rigorous serial techniques, and the resulting polyphonic corpora were also 
used to model the non-tonal music under consideration. Throughout we will refer to melodic corpus and 
polyphonic corpus to distinguish the monodic single- and polyphonic multi-strand corpora (and in each 
case we have both a ‘non-tonal’ and a ‘tonal’ set).  
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We asses the utility of the algorithmically-generated corpora by training a probabilistic model of 
auditory expectation (Pearce, 2005) on them and then assessing the extent to which the trained model is 
capable of predicting pitch structure in various sets of music. We propose three hypotheses concerning the 
factors determining predictive success. 

 
a) Training on the serial non-tonal corpora will enhance modeling of non-tonal music, particularly 
serial non-tonal music. But we entertain the idea that non-tonal music, even if not composed by 
serial methods, is likely to be influenced by pitch patterns learnt from serial music, as discussed 
for example by Forte in relation to the compositions of Messiaen (Forte, 2002). 
 
b) Non-tonal music will be better modeled after training on the non-tonal corpus than after training 
on the tonal corpus. 
 
c) The (monodic) melodic corpora will be stronger predictors of monodic than of polyphonic 
music; and correspondingly, better than the polyphonic corpora as predictors.  

 
Note that polyphony, that is, multiple strands of melody and/or chordal elements, normally reduces the 
clarity of the original pitch series. For example, when a chordal harmonic approach is superimposed on a 
serial melodic approach, the sequential features of the serial method are diminished because each individual 
chord no longer displays the original ordering of the constituent notes (it displays no ordering). Note also 
that a harmonic chordal structure could itself be composed in a rigorous serial manner, separately from any 
melodic material; this could then be the basis of a different alphabet of chord vectors (each alphabet 
member comprising several pitches), potentially used for composition and/or modeling. We have not yet 
pursued these possibilities.  

To test our three hypotheses we trained models on the algorithmic corpora introduced above (tonal 
melodic, non-tonal melodic, tonal polyphonic and non-tonal polyphonic). We compare these models with 
two control conditions: first, models trained instead with two corpora of melodies with randomly selected 
pitches (see Methods section); and second, models trained instead on a comparably large tonal folk song 
corpus (Essen ‘allerkbd’ dataset, see below). We now summarize the features of these corpora which are 
relevant to their predictive capacity in terms of our hypotheses a, b and c: whether the feature is present, 
and whether it is expected to enhance or diminish predictive capacity for modeling monodic non-tonal 
music. Figure 1 shows examples of the opening 48 pitches of compositions within some of these corpora. 
Note that the effects of some of these features will depend not only on the qualitative aspects of the 
corpora, but also the quantitative, and hence our suggestions are offered with caution.  
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Figure 1. Examples of the algorithmic melodies and transforms. These are the sources for the algorithmic 
generation of the corpora (as detailed in Figure 2, and the text). It can be seen readily that pitches in the 
‘Serial’ notations recur after events 12 and 24, and in the ‘Random (without replacement)’ notation recur 
after event 37. 
 

Corpus 1: Random melodic sequences. These are expected to have high information content, 
being unpredictable. Prediction enhancing features (for monodic non-tonal music): b (it is mainly 
non-tonal), c (it is single strand); diminishing features: a (it is not serial). 
 
Corpus 2: A serial melodic non-tonal corpus. Enhancing: a, b, c. 
 
Corpus 3: A serial melodic tonal corpus, with melodic passing notes (see Methods), to permit 
pitch diversity of the order of Western classical music. This serial tonal melodic corpus thus 
reflects serial procedures, but less rigorously, because ‘passing’ notes are allowed. It is entirely in 
major keys, but the passing notes may be extrinsic to the key in force at any moment. Enhancing: 
a, c; diminishing: b (the corpus is tonal). 
 
Corpus 4: A serial polyphonic non-tonal corpus in the form of two handed keyboard music 
(derived from 2). Note that while this corpus is played chordally, it is not constructed of 
systematic harmonic progressions: rather these are consequent on the melodic progressions, as 
discussed above. Enhancing: a, b; diminishing: c. 
 
Corpus 5: A serial polyphonic corpus in the form of two handed keyboard music. Derived from 3. 
Note that while this corpus is played chordally, it is again not constructed of systematic harmonic 
progressions: rather these are consequent on the melodic progressions. Consequently, the 
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perceptible tonal features of corpus 3 are sometimes much further diminished. Enhancing: a; 
diminishing: b, c. 
 
Corpus 6: We also compared corpora 1-5, when appropriate, with a separate tonal melodic Folk 
song corpus (6), Essen (see Methods for details). Enhancing: c; diminishing: a, b. 
 

To test our hypotheses, we apply models trained on these corpora to the task of predicting sequential pitch 
structure in four sets of non-tonal music.  

 
Music 1: Webern Piano Variations. A rigorous serial non-tonal composition, for two handed 
keyboard player, i.e. conceived polyphonically, harmonically and melodically. Hypothesized 
features of a corpus which should enhance the modeling this piece: a, b; diminishing feature: c. 
 
Music 2: Schoenberg Pierrot Lunaire Movement 7. A non-tonal composition for two melodic 
voices, not constructed with rigorous serial procedures, but showing elements of inversion and 
retrogradation. Few notes coincide in the two voices: they are probably not conceived 
harmonically in the ways that chordal piano passages are. Hypothesized enhancing features: b, c; 
diminishing feature: a.  
 
Music 3: Non-tonal sections of performances by professional piano improvisers. These 
polyphonic performances are conceived both melodically and harmonically, and the non-tonal 
sections can be discerned by pitch class interval frequencies. They are not rigorously serial, and 
rather than precise retrogrades contain contour relationships in the melodic elements. Enhancing 
feature: b; diminishing features: a, c. 
 
Music 4: Tonal sections of performances by professional piano improvisers. As for the non-tonal 
sections, these polyphonic performances are conceived both melodically and harmonically, and 
can be discerned by pitch class interval frequencies. They are not rigorously serial, and rather than 
precise transpositions, for example, contain contour relationships in the melodic elements. 
Diminishing features: a, b, c. 

 
Our approach is slightly different from standard corpus analysis methodology, which involves analyzing a 
corpus to identify significant musical structures within it. Here we use a probabilistic model to examine 
relationships between corpora by training the model on one (Corpus 1–6) and using it to predict another 
(Music 1–4). The extent to which the trained model successfully predicts the music reflects the degree to 
which the training corpus contains structure that is similar to, and hence predictive of, the music to which 
the model is applied. In addition, most of the corpora (all except Essen) that we use to train our models are 
algorithmically generated, which has the advantage that we can isolate the kinds of structure introduced 
(e.g. strictly serial vs tonal) to see if particular structures are predictive of the music, as indicated in our 
distinctions between factors a-c above. Our goal here is to examine whether these algorithmically-
generated corpora, constructed according to serial principles, are predictive of non-tonal music and, if so, 
which principles of construction are most predictive. 

 
 

METHODS 
 

Algorithmic Construction of Non-tonal and Tonal Melodic (Monodic) Corpora 
 
The first author coded patches in Max/MSP (v5, Cycling74) to algorithmically manipulate pitch sequences 
and record the melodic output. Rhythmic structure was not varied in these sequences (merely the 
isochronous sequence of notes) nor did it form part of our analyses. 
 Figure 2 summarizes the overall procedure that was followed to create the experimental corpora. 
To form Corpus 2, the serial non-tonal melodic compositions, in keeping with Schoenbergian tradition we 
constructed tone rows, each comprising a sequence of notes including one occurrence of each of the 12-
pitch classes of the Western equal-tempered chromatic octave. We created 12 tone rows (P), one 
commencing with each of the 12 pitches between middle C (midi note 60) and midi note 71, by a 
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constrained stochastic process (there are c.9.8 million unique tone rows, as some of the 12 factorial random 
rows are identical by transposition, see Hunter & von Hippel, 2003). We then generated 1008 sequential 
note events from each row following fully defined serial rules as follows, and without permitting local pitch 
repetitions. Each 1008-note piece had the same sequence of 84 12-note sections. First, there were four 
sections P, RP, I, RI (untransposed). Each of the next 76 sections was a random selection from the 4 row 
transforms, and two compositional variabilities were rigorously superimposed on each of these sections: 
first, there was a 60% chance of a random upwards transposition of that transform by +1 to +11 semitones 
(this changes the pitch class of each note of the section); second, there was a 40% chance of any individual 
note being transposed 1 or 2 octaves up or down (this does not change the pitch class of the note). Note that 
none of these transpositions change the intervals between successive pitch classes (bearing in mind that 
because of the transpositions in the central 76 sections, the row can occur with any pitch class contributing 
its first note in a given rendering). In the final 4 sections, the untransposed RI, I, RP and P were played 
(reverse order to the outset). Overall pitch was constrained within the range 48-84. 
 
 

 
Figure 2. A flow diagram representing the algorithmic formation of the non-tonal and tonal corpora.  
 
 To form the novel serial but tonal Corpus 3, major melodies were first constructed, in a closely 
similar fashion. We made one melody of twelve notes in each of 12 major keys, using the 7 diatonic major 
pitches, and with pitch repetition allowed before complete usage of the set of pitches (i.e. some of the 
twelve-note melodies did not use all seven pitches, and they all contained note repetitions, unlike the serial 
non-tonal melodies). Chromatic inversion of a major melody (but not a minor) creates a transform which is 
now in the major key four semitones lower than that of the original melody, and hence we were again able 
to use transforms P, RP, I, and RI while moving between two major keys. For example, the C major scale 
ascending, when chromatically inverted gives rise to a descending Ab scale, again starting on C, four 
semitones above the tonic Ab.  

The use of retrograde and inversion in tonal music was well understood by 15th century composers 
such as Obrecht (Todd, 1978) but does not seem to have been a common technique since. We used it here 



Empirical Musicology Review  Vol. 11, No. 1, 2016 

 33 

so as to bring compositional similarities to the atonal and tonal corpora. Tonal sequences of 1008 notes 
were constructed similarly to the non-tonal corpus. The first four and last four sections were melody 
transforms in the same order as for the non-tonal corpus. In the intervening 76 sections compositional 
variabilities were again introduced: every fifth note had a 1/3 chance of being transposed down 1 semitone 
and a 1/3 chance of being transposed up 1 semitone (this changes the pitch class of the transposed note). 
Every note in these sections might also be transposed up or down one octave (40% chance of change: this 
does not change pitch class). The chromatic transpositions were intended to mimic melodic decorations, 
and the more conservative octave transposition (by no more than one octave) is appropriate for tonal music. 
There were no transpositions of a transform as a whole (unlike the method used for the non-tonal 
melodies). Again unlike the transpositions used in the non-tonal melody generation, this overall process can 
create pitch class successions in the tonal melodies that do not conserve the original pitch intervals, but 
which generally conserve the pitch contour, and do not destroy the current tonality. These features were 
necessary both for compositional diversity, and to ensure that all the 12 pitch classes were used. Overall 
pitch was again constrained between 48-84. For both Corpora 2 and 3, the algorithms normally generate 
more pitches above than below middle C, as in common practice keyboard music. 
 We also constructed two control corpora. Corpus 1a was a set of 12 compositions with pitches 
between 48 and 84 chosen at random without replacement until all had been used (so after all 37 pitches 
had been chosen all became available for the next of 27 rounds of random choice). Corpus 1b comprised 12 
compositions with pitches chosen at random with replacement; thus unlike 1a, this corpus contained some 
immediate or closely adjacent repetitions of pitches, and had a less uniform distribution across pitches. 
These two random corpora each consisted of 27 x 37 (999) events, to be similar in size to the non-tonal and 
tonal melodic corpora. 
 
Construction of Polyphonic Corpora: The Algorithmic Serial Collaborator 
 
Because most music (particularly non-tonal music) is polyphonic (i.e. combines more than one melody 
strand together with simultaneously articulated multi-note chords), the first author also constructed a MAX 
patch which generates ‘two-handed’ keyboard performances. This algorithm has been described in detail 
elsewhere (Dean, 2014), and is in regular use for creative work in improvisation and composition. The 
patch takes a melodic sequence (such as those of the non-tonal and tonal melodic corpora described above), 
to generate music which is normally sounded on a Midi-driven piano, such as the PianoTeq physical 
synthesis grand piano models. It is used in a very simple manner here. 
 Two-handed (polyphonic) compositions were generated from each of the non-tonal and tonal 
melodic (monodic) sequences comprising the respective melodic corpora, to form Corpora 4 and 5 
respectively, as follows. The pitches were used in exactly the sequence in which they occurred in the 
corpora, but with one ‘hand’ realizing the first 50% of the notes sequentially, and at the same time the other 
hand realizing the latter 50%. Each hand can play single notes or chords of up to 4 notes, with the 
maximum chord size taken from the Webern Piano Variations analysed below. The melodic (monodic) 
corpora all use the pitch range 48-84; for the polyphonic corpora the ‘left hand’ is transposed to the range 
24-60 and the ‘right hand’ to 60-96, thus the pitch range of the corpora is enlarged. The Serial 
Collaborator’s chords remove the original sequencing of the constituent notes, as they are now sounded 
simultaneously. There is also re-sequencing as a consequence of the coexistence of the two hands, so that 
for example, if both hands start together, then notes 1-20 and c. 505-524 will be likely to mingle 
sequentially in the case of a Serial Collaborator composition based on the 1008 note melodies. This feature 
of serial composition is constitutive, and contributes to the flexibility of the method. Given this 
intermingling, it now becomes possible for the same note class (but not pitch, other than C 60) to be 
occasionally enunciated twice in immediate sequence (or simultaneously in a chord) because of the 
polyphony. Note that in general the non-tonality of the non-tonal melodies is conserved in making these 
polyphonic compositions, but the tonality of the tonal melodies is potentially perturbed towards non-
tonality, because sections corresponding to distinct tonalities may be sounded together. These two-handed 
keyboard works are arguably more ecologically realistic than the melodic sequences, and this aspect was 
enhanced by providing rhythmic and dynamic (key velocity) pattern generation for the patch, which 
changes the intermingling of the sequences. These patterns may be generated independently of the pitch 
patterns. Since pitch structure is the focus of the present work, only the resulting (re-sequenced) stream of 
single pitches was analysed. The streams are recorded as text or Midi-files containing the pitch sequences 
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as if they were again monophonic, with chords arpeggiated from low pitch to high (as also described next 
for the Webern piano music).  
 
Encoding the Pitch Structure of Non-tonal Compositions as Modeling Subjects 
 
Schoenberg’s Pierrot Lunaire, Movement 7, a non-tonal (but not serial) composition for flute and voice was 
encoded for modeling. The two parts were separated (238 events in total), and the pitch sequences of each 
were listed manually. Similarly, the complete pitch sequence of Piano Variations Op. 27 of Webern, a 
canonical serial work, was encoded. Where chords occur, their constituent pitches were entered 
successively from low to high, thus producing some re-sequencing of the pitch series as previously 
discussed.  
 
Modeling the Corpora with IDyOM 
 
The Information Dynamics of Music (IDyOM) model considers multiple viewpoint n-gram statistics of 
melodic (monophonic) sequences, like those of our corpora, and can predict several features of pitch 
sequences, phrase segmentation, and perceptual expectations (Pearce, 2005; Pearce & Wiggins, 2006; 
2012) [2]. Space does not permit a detailed re-exposition of IDyOM, but the references quoted provide 
substantive introductions. Traditional corpus analysis often proceeds by analyzing musical structure within 
a given corpus. In contrast, IDyOM is trained on a corpus, and then predicts another. The greater the 
sharing of structure between the corpora, the better the prediction. IDyOM generates a conditional 
probability distribution governing some property of the next event in the musical sequence – here, the pitch 
of the next note. We use the negative log probability – or Information Content (IC) - as a measure of 
unexpectedness, in context, for each note in a piece. Averaged over notes and compositions, we can use IC 
as a measure of prediction performance – models making accurate predictions by predicting notes with a 
high probability, will have a correspondingly low IC, and vice versa.  

In generating probabilistic expectations, IDyOM considers the influence of both short-term 
statistical information learned dynamically from the current piece(s), the STM (short term model), and the 
long-term impact of prior exposures to music, the LTM (long term model). The LTM can be considered to 
model the musical experience of a listener in place before exposure to new material. IDyOM itself can be 
pre-trained on chosen corpora, modeling the impact of such experience as a component of its LTM. 
Different ‘viewpoints’ (Conklin & Witten, 1995) may be used to combine information from different 
representations of the music (at different levels of abstraction), taking into account pitch, rhythm, dynamics 
and their interrelations, but here we are only concerned with pitch information. The features directly related 
to this are chromatic pitch (note number: termed Pitch), chromatic interval between successive notes 
(PitchInterval) with sign preserved (i.e. descending -, ascending +), and the equivalent parameters 
expressed in terms of chromatic pitch class, with C (60) as fundamental (PitchClass and 
PitchClassInterval). PitchClass is Pitch modulo 12 while PitchClassInterval is PitchInterval modulo 12, 
but with sign again preserved. PitchInterval and PitchClassInterval are thus identical unless the interval is 
larger than 11 semitones. Here we take the best model of a piece or corpus to be that which returns the 
lowest mean IC. We compare STM and LTM models, their combination (BOTH), and models in which the 
LTM progressively learns the new material (LTM+). The model combining STM and LTM+ is termed 
‘BOTH+’. Since the alphabet size (the number of different pitches present in the model) influences the IC 
(because every pitch has to be assigned at least some probability), we are careful to pre-expose all models, 
the STM models included, to the alphabet of the complete training set (corpus) which is being studied; even 
though the STM is not pre-trained. The polyphonic corpora have a larger alphabet than the monodic. We 
routinely use ten-fold cross-validation, so that our IC values constitute reliable, generalizable estimates. 
This involves forming 10 disjoint subsets of a corpus, and training the model 10 times, each time omitting a 
different subset to use for testing; the 10 mean IC values so obtained are averaged. Note again that although 
we generated genuine polyphonic corpora (4-5), we analyze them as single linear sequences, as if monodic, 
and we do the same for the polyphonic pieces we model.  

 
RESULTS 
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We consider first whether the non-tonal and tonal melodic (monodic) corpora contain distinctive statistical 
features; second, whether the non-tonal and tonal polyphonic corpora contain distinctive statistical features 
and how these relate to the melodic corpora; and finally the predictive capacities of the algorithmically-
generated corpora for non-tonal music, in comparison with the random and Essen corpora.  
 
Basic Features of the Algorithmic Compositional Monodic Corpora 2 and 3 
 
It was expected (as mentioned above) and observed in listening that for the non-tonal melodic corpora there 
might be occasional bursts of tonality; and for the tonal melodic corpora, there might be short apparent 
impacts of other keys, as well as of the key of the inversion. The pitch class distributions for the non-tonal 
melodic (monodic) transforms were as required by the algorithm: all 12 classes show identical frequency. 
Pitch class distributions were non-identical for the monodic tonal corpus, and for both corpora as expected 
there were more notes above than below C60 (see Figure 1).  
 
 

 
Figure 3. Pitch and Pitch-Class Frequencies in the Algorithmic Melodic Corpora. The top row is for the 
Non-Tonal and the bottom for the Tonal Corpus. The left column is for pitch class, and the right for pitch. 
Note that the tonal distributions reflect not only the prime (P), but also I, PI, PR, and the transpositions; 
thus they do not reveal the classical melodic tonal hierarchy.  
 
Characterising the Algorithmic Melodic (Monodic) Corpora 2 and 3 by IDyOM Modeling 
 
It was important to assess how models of our new algorithmic corpora compare with each other, and with 
those using existing corpora such as the Essen Folk Song collection (Schaffrath, 1995), so as to establish 
their potential as pre-training entities with possible distinct predictive capacity. Since the size of a corpus 
may influence its predictive capacity, the melodic non-tonal and tonal corpora (corpora 2 and 3) were split 
into two halves. In this way the impact of using pre-training on either one corpus or a mixture of two could 
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be fairly tested. Table 1 shows the results of these analyses, using IDyOM. For each corpus and model 
configuration, a combination of individual viewpoints was optimized using hill-climbing with mean IC as 
the evaluation function (Pearce, 2005; Pearce & Wiggins, 2006). Consistent with previous results (Pearce, 
2005), in all cases the BOTH+ model provided the lowest IC with or without pre-training for the non-tonal 
and tonal melodic corpora.  
 We also compared pre-training with existing tonal corpora. We selected a corpus of German 
folksongs (Essen collection allerkbd) from the Essen Folk Song Collection (Schaffrath, 1995) containing 
5915 events (110 compositions) comparable in size with half of one of our algorithmic corpora. 
 
Table 1. IDyOM Modeling of the Algorithmic and Random Melodic Corpora 
Viewpoints Selected Model 

Configuration 
Pre-training  Mean 

IC  
Modeling the Non-tonal Melodic Dataset 1-6 
Pitch PitchInterval PitchClass 
PitchClassInterval  

BOTH+ None 3.80 

As above BOTH+ Non-tonal pieces 7-12 3.80 
As above BOTH+ Tonal pieces 7-12 3.79 
As above BOTH+ Non-tonal 7-12 and tonal 

7-12 
3.79 

As above BOTH+ Essen  3.90 
Modeling the Tonal Melodic Dataset 1-6 
Pitch PitchInterval PitchClass  BOTH+ None 4.05 
As above BOTH+ Non-tonal pieces 7-12 4.08 
As above BOTH+ Tonal pieces 7-12 4.07 
As above BOTH+ Non-tonal 7-12 and tonal 

7-12 
4.07 

As above BOTH+ Essen  4.13 
Modeling the Melodic Random Corpus (generated with replacement) 
Pitch PitchInterval PitchClass 
PitchClassInterval  

LTM+ None 5.26 

Modeling the Melodic Random Corpus (generated without replacement) 
As above LTM+ None 5.25 
Modeling the Essen :allerkd German folk song tonal Corpus 
Pitch PitchInterval BOTH+ None 2.46 
 
Note to Table 1. Even the small IC changes are statistically significant (p <0.01), when judged by a full 
comparison of the multiple IC values obtained for each pitch event in the corpora. This is normal with data 
of this kind (see Pearce, 2005). In this Table and later ones bold indicates the minimum IC values.  
 

The models reveal distinctive features of the algorithmic melodic corpora as shown in Table 1. For 
the tonal melodic corpus, the following viewpoints were selected: Pitch, PitchInterval, PitchClass, yielding 
an overall IC, without pre-training, of 4.05. For the non-tonal melodic corpus, all four viewpoints were 
selected: Pitch, PitchInterval, PitchClass, PitchClassInterval (consistent with the presence of many intervals 
greater than 11 semitones), yielding an overall IC of 3.8. Although these values are much higher than those 
for our tonal corpus (Essen: 2.46), they are not at ceiling, as they are much lower than the IC values for the 
two random corpora 1a and b (5.25, 5.26) for which all four viewpoints were also selected. The algorithmic 
non-tonal and tonal melodic corpora therefore contain significantly more systematic internal statistical 
structure than the random corpora. 

Preservation of PitchClass in the model of the tonal monodic corpus (as well as in that of the non-
tonal) may reflect the fact that our manipulations of whole major key melodies, which were based entirely 
on untransposed P-RP-I-RI segments, generate only two clear-cut keys (C and Ab major if the starting 
melody is in C major). It is interesting that PitchClassInterval was a predictor for the random corpora, 
presumably again a consequence of the presence of large intervals; though as expected these were poorly 
cohesive as judged by the high IC.  
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Pre-training with the non-tonal and tonal melodic monodic corpora slightly enhanced prediction 
performance of the model for the non-tonal corpus. But the effects of pre-training on models for all other 
corpora were either neutral or negative, suggesting both the statistical homogeneity of the corpora (further 
training from the other half of the corpus does not improve performance) but also their difference, in 
statistical terms, from other corpora[3]. Overall, therefore, these slight effects of pre-training suggest that 
the algorithmic melodic sequences are internally very consistent, reflecting the uniform use of the P-RP-I-
RI transformation approach. The non-tonal and tonal melodic corpora are substantially distinct from 
existing tonal music, as judged by the dramatically lower IC for the Essen set, and its incapacity to enhance 
any of these models.  
 
Characterising the Polyphonic Corpora 4 and 5 by IDyOM Modeling 
 
Table 2 shows selected analyses of the ‘two-handed’ polyphonic serial corpora (treated after linearising to a 
monodic sequence, as described in Methods). We again used hill-climbing to determine the optimum set of 
features, and used these for comparisons of the impact of pre-training with different corpora. Consistent 
with the re-sequencing involved in the keyboard performances (discussed above) the information contents 
of these corpora were substantially increased over those of the algorithmic melodic (monodic) corpora from 
which they were derived. Those for the non-tonal corpus were in this case higher than for the tonal. The 
best models for the two sets, non-tonal and tonal, were similar in form to those for the melodic corpora. 
However, for the non-tonal set, pitch class was no longer a useful predictor, though pitch class interval 
remained (alongside pitch and pitch interval). This likely reflects the increasing mixing of the melodic 
strands and thus of P, I, RI, RP components in the construction of the polyphonic corpora. For the tonal 
polyphonic corpus the optimal model form was unchanged from that for the tonal melodic monodic corpus: 
pitch class but not pitch class interval was predictive, together with pitch and pitch interval. 

For both tonal and non-tonal polyphonic corpora, pre-training on a withheld portion of the corpus, 
or on a portion of the other polyphonic corpus, or both, improved prediction performance, with the greatest 
improvement resulting from the combined tonal and non-tonal polyphonic corpora in both cases. The Essen 
corpus also modestly improved performance for the tonal polyphonic but hardly for the non-tonal corpus. 
The positive impact of pre-training with a withheld portion probably reflects the greater inhomogeneity of 
the polyphonic corpora compared with the monodic corpora.  
 
Table 2. IDyOM Modeling of the Algorithmic Polyphonic Corpora 
Viewpoints Selected Model 

configuration 
Pre-training  Mean 

IC  
Modeling the Non-tonal Polyphonic Dataset 1-6 
Pitch PitchInterval 
PitchClassInterval  

BOTH+ None 5.43 

As above BOTH+ Non-tonal Polyphonic pieces 
7-12 

5.40 

As above BOTH+ Tonal Polyphonic pieces 7-
12 

5.40 

As above BOTH+ Non-tonal 7-12 and tonal 7-
12 

5.38 

As above BOTH+ Essen 5.42 
Modeling the Tonal Polyphonic Dataset 1-6 
Pitch PitchInterval 
PitchClass  

BOTH+ None 5.36 

As above BOTH+ Tonal Polyphonic pieces 7-
12 

5.35 

As above BOTH+ Non-tonal Polyphonic pieces 
7-12 

5.29 

As above BOTH+ Non-tonal 7-12 and tonal 7-
12 

5.26 

As above BOTH+ Essen  5.33 
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 Given that the characteristics of our four main algorithmic corpora (2-5) were appropriate for our 
purpose, we next proceed to the core question of whether the non-tonal melodic (monodic) corpus 
improves IDyOM prediction performance for composed or improvised non-tonal music. As explained in 
the introduction, we can predict that performance will be enhanced most for Music 1 (Webern), being serial 
and non-tonal, and to a lesser extent for Music 2 (Schoenberg), being non-serial though non-tonal. Music 3 
(non-tonal improvisation) and 4 (tonal) are ecologically valid keyboard improvisations, and so expected to 
be less rigid in their pitch patterns: nevertheless we expected the non-tonal algorithmic corpora to enhance 
prediction performance of our models for at least the non-tonal segments (Music 3).  
 
Using the Algorithmic Corpora for Modeling Non-tonal Compositions by Webern and 
Schoenberg 
 
There are several ways to address the question of whether a given musical corpus has predictive capacity 
for particular works; in other words, whether it contains structure which is also important in the works 
being modeled. Perhaps the most straightforward is to ask whether the prediction performance of a short-
term model (representing a totally naïve listener) is improved when it is supplemented with background 
knowledge of the corpus (the LTM) in a BOTH+ model.  Here we hypothesized that background 
knowledge of the melodic non-tonal corpus would be most effective, of the melodic tonal corpus 
ineffective, and of the Essen corpus ineffective.  

Consistent with this hypothesis, the algorithmic melodic non-tonal corpus improved prediction 
performance for the (linearized) serial Webern Piano Variations as a whole, while the tonal corpus and 
Essen had a negative impact on performance, as shown in Table 3. Here we make comparisons with the 
STM, which produced an IC of 4.27. The non-tonal corpus improved prediction performance in a 
viewpoint-optimized BOTH+ model (IC 4.21), by using the PitchClassInterval viewpoint. Adding the tonal 
melodic corpus to this model impaired prediction performance (4.37). Essen was ineffective. Qualitatively 
similar results were found when the polyphonic corpora were used for pre-training, where the non-tonal but 
not the tonal corpora showed some predictive capacity, although as expected the effects were much smaller 
here (viewpoint-optimized BOTH+, IC: 4.26). 
 
Table 3. Modeling the Webern Piano Variations Op 27, a serial non-tonal composition. 
Viewpoints 
selected 

Model 
configuration 

Pre-training Mean IC  

Modeling with the melodic corpora 
Pitch PitchInterval STM None 4.27 
Pitch PitchInterval 
PitchClassInterval 

BOTH+ Essen 4.59 

Pitch PitchInterval BOTH+ Melodic non-tonal Corpus 1-12 4.37 
Pitch PitchInterval 
PitchClassInterval 

BOTH+ Essen 4.73 

Pitch PitchInterval 
PitchClassInterval 

BOTH+ Melodic non-tonal Corpus 1-12 4.21 

Pitch PitchInterval 
PitchClassInterval 
(Optimised with the 
Non-Tonal Melodic 
Corpus) 

BOTH+ Melodic non-tonal Corpus 1-12 and 
Melodic tonal Corpus 1-12 

4.37 

Modeling with the polyphonic corpora 
Pitch PitchInterval STM None 4.27 
Pitch PitchInterval  BOTH+ Polyphonic non-tonal Corpus 1-12 4.26 
Pitch PitchInterval  BOTH+ Polyphonic Non-Tonal Corpus 1-12 and 

polyphonic tonal Corpus 1-12 
4.27 

 
 

Table 4 shows results for Schoenberg’s Pierrot Lunaire, Movement 7, arguably a contra-tonal 
(though not serial) composition for flute and voice, for which we considered each voice separately (238 
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events in total). We hypothesized only limited predictive capacity for our non-tonal melodic corpus (and 
none for the tonal melodic corpus), because the composition itself is not serial but is non-tonal. Given that 
the composition is not chordal, we also expected no or very slight predictive benefit in pre-training on our 
polyphonic corpora. In agreement, the optimized STM produced an average IC of 4.48 while improved 
prediction performance was again achieved with viewpoint optimized BOTH+ models pre-trained on the 
melodic non-tonal corpus (4.41) and this effect was reduced when the tonal corpus was added (4.43). Essen 
was again ineffective. Here, pre-training on the non-tonal polyphonic corpora did not yield any 
performance improvements.  
 
Table 4. Modeling Schoenberg’s Pierrot Lunaire Movement 7.  
Viewpoints 
selected 

Model 
configuration 

Pre-training Mean IC  

Modeling with the melodic corpora 
Pitch PitchInterval 
PitchClassInterval 
PitchClass 

STM None 4.49 

Pitch PitchInterval BOTH+ Essen 4.77 
As above BOTH+ Melodic non-yonal corpus 1-12 4.41 
As above 
 

BOTH+ Melodic non-tonal corpus 1-12 and 
Melodic tonal corpus 1-12 

4.43 

Modeling with the polyphonic corpora 
Pitch PitchInterval 
PitchClassInterval 
PitchClass 

STM  4.52 

Pitch PitchInterval BOTH+ Polyphonic non-nonal corpus 1-12 4.76 
As above BOTH+ Polyphonic Non-Tonal corpus 1-12 and 

Polyphonic tonal Corpus 1-12 
5.31 

 
 

Overall, the results for modeling these non-tonal compositions were consistent with our hypothesis 
that the algorithmic non-tonal monodic corpus would embody melodic information predictive of actual 
non-tonal music.  
 
Using the Algorithmic Corpora for Modeling Tonal and Atonal improvisation. 
 
As an ecologically valid assessment of improvised music, we examined performances by three professional 
piano improvisers from an earlier study (Dean et al., 2014) who were requested to perform c.3 minutes of 
improvisation in an ABA form, A ‘tonal’, B ‘atonal’ and A again tonal. No discussion of the meaning of 
these terms was given, and there were no queries from the performers (neither author performed). A 
Yamaha Disklavier Grand Piano was used, and midi recordings made of the pitch sequences performed. As 
discussed above, chordal notes appear in the resultant linearized pitch series in the sequence they entered 
the MIDI-stream.  

We determined whether the algorithmic corpora aided in modeling the less (‘atonal’) and more 
tonal sections. We expected liberal interpretations of ‘tonal’ and ‘atonal’, but a meaningful contrast. The 
contrast was confirmed by computational segmentation of the performances (see Figure 4), as we detailed 
previously. There were 634 events in the three ‘atonal’ segments, and 772 events in the six ‘tonal’. Tables 5 
and 6 summarize the modeling undertaken.  
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Figure 4. Segmentation of a piano improvisation focused on tonal-atonal transitions. A simple measure of 
“tonalness” is shown as “atratio” (atonal:tonal ratio) with respect to time across the performance. We 
measured with moving windows of 80 successive events the ratio of the number of 1, 6 and 11 semitone 
intervals (more dissonant, less tonal) to the number of occurrences of the other (more tonal) intervals 
between pairs of notes. This ratio was measured for each note in relation to each of the following six notes, 
and averaged for the 6 note-pairs. This range was chosen because it was the lowest integer value which 
exceeded the average number of notes played in a chord. Nevertheless, the notes were treated in the 
sequence they occurred in the MIDI-file, so that notes which are heard as chords are separated. Values so 
obtained were then averaged across the window of 80 events, and then the window moved forward by one 
event. Thus there were 79 less time points in the resultant atratio series than there were in the original data. 
The time series of these values was segmented in a principled manner using the R library ChangePoint (by 
Rebecca Killick). The central portion is taken to be the ‘atonal’ segment, fulfilling the requested referent 
for improvisation. Similar but less discriminating segmentation was achieved by using windowed pitch 
class entropy (not shown; a suggestion from David Temperley).  
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Table 5. Modeling piano improvisations with the melodic corpora. 
  

Viewpoints Selected Model 
configuration 

Pre-training  Mean IC  

Atonal Segments  

Pitch PitchInterval STM None 5.35 

As above BOTH+ Essen (tonal) 6.04 

As above BOTH+ 12 non-tonal 
pieces 

5.32 

As above BOTH+ 12 tonal pieces 5.30 

As above BOTH+ 12 non-tonal 
plus 12 tonal 

5.27 

Tonal segments  

Pitch PitchInterval PitchClass STM None 4.95 

As above BOTH+ Essen (tonal) 5.38 

As above BOTH+ 12 non-tonal 
pieces 

4.99 

As above BOTH+ 12 tonal pieces 4.98 

As above BOTH+ 12 non-tonal and 
12 tonal 

4.96 



Empirical Musicology Review  Vol. 11, No. 1, 2016 

 42 

 
 

The ‘atonal’ performed segments have higher information content than the tonal, comparable in 
magnitude with those shown above for the algorithmic polyphonic corpora, whereas the relationship is 
reversed for the algorithmic non-tonal vs tonal algorithmic melodic monodic corpora, as shown in Table 1. 
This is likely due to an increased simplicity of the improvised tonal sections relative to the algorithmic 
tonal melodic corpora. It may also reflect the lesser precision (higher unexpectedness) with which a 
performer implements the concept of ‘atonality’ in comparison with the rigor of the serial algorithm. 
Consistent with this, the best analysis for distinguishing the tonal and atonal segments of the performances 
was simple in comparison with the serial procedures (see legend to Figure. 4). 

Our hypothesis was that the non-tonal melodic (monodic) corpus, at least, would be predictive for 
the less tonal improvised segments, and the tonal corpus less so. We hypothesized that the tonal corpus 
would also be predictive for the tonal improvisation segments, but Essen would only have predictive 
capacity for the tonal segments. Table 5 shows the results of the analysis for models pre-trained on the 
melodic corpora to test this.  

In the case of the non-tonal improvisation segments, the hypothesis was supported for the non-
tonal melodic corpus and for Essen, and there was also benefit from knowledge of the tonal melodic 
corpus. Prediction performance is improved by supplementing the STM (IC: 5.35) with an LTM+ trained 
on the melodic tonal corpus (BOTH+: 5.30), one trained on the melodic atonal corpus (BOTH+ 5.32) and 
one trained on both melodic corpora (BOTH+: 5.27). For the tonal improvisation segments, prediction 
performance is not improved by supplementing the STM (IC: 4.95) with LTM+ models trained on any 
combination of the melodic tonal or non-tonal corpora: this aspect of the hypotheses was not supported. 
The viewpoints selected for predicting the atonal segments were Pitch and PitchInterval, while for the tonal 
segments, these viewpoints were supplemented by PitchClass in the optimal model, consistent with a strong 
tonal feature in the performances. Prediction performance was not improved by training models on the 
polyphonic corpus in any of our cases (see Table 6). 
 
Table 6. Modeling piano improvisations with the polyphonic corpora. 
 
Viewpoints selected Model 

configuration 
Pre-training Mean 

IC  
Atonal segments 
Pitch 
PitchClassInterval 

STM None 5.67 

As above BOTH+ Non-tonal polyphonic pieces 1-12 5.77 
As above BOTH+ Non-tonal and tonal polyphonic pieces 1-

12  
6.51 

Tonal segments 
Pitch PitchInterval 
PitchClassInterval 

STM None 5.12 

As above BOTH+ Tonal polyphonic pieces 1-12 5.55 
As above BOTH+ Non-Tonal and Tonal polyphonic pieces 1-

12 
6.04 

 
Note to Table 6: Note that the substantially higher IC values for the STM models in this Table in 
comparison with Table 5 are an example of the impact of the increased alphabet size in the polyphonic 
corpora. 
 

In summary, the algorithmic melodic (monodic) corpora were predictive for non-tonal 
improvisations (Table 5), and even the tonal melodic corpus had a positive impact. Taken with the 
introduction in this case of PitchClass as a predictor, this suggests that the maintenance of interval 
repetition based on the serial method and referenced to the ongoing tonality of the improvisation might be 
influential. The algorithmic polyphonic corpora were not effective on the tonal and atonal segments (Table 
6). This further supports the idea that improvisers use distinctive methods for achieving referent targets, 
and experience and introspection (by the first author) suggests that the two hands may be used in a more 
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autonomous way than would be implied by splitting continuous serially-derived note streams into melodic 
and chordal notes. Thus it might be predicted that the polyphonic corpora would have more power in 
models of the Webern piano piece for which they were intended; and this was indeed observed above, even 
though the effect was slight.  
 

DISCUSSION 
 
Our main conclusion is that the algorithmic serial melodic (monodic) compositions are useful in 
information-theoretic modeling of pitch sequences in a range of non-tonal music, both composed and 
improvised. Indeed, even the algorithmic serial tonal melodic corpus provided some predictive power, 
though much less so than the non-tonal melodies, as hypothesized. Specifically, the resultant corpora were 
predictive in modeling the atonal segments of piano improvisations and non-tonal compositions by Webern 
and Schoenberg. Furthermore, some of these works (the Webern and the improvisations) are two-handed 
and polyphonic, therefore constituting a challenging test for models trained on monophonic algorithmic 
corpora, and making the positive results even more surprising (and encouraging). 

The non-tonal and tonal algorithmic melodic (monodic) corpora are distinctive in their 
information-dynamic structure, and quite different from both random corpora and the Essen folk song tonal 
corpus employed (Table 1). The greater freedom used in generating the tonal melodic corpus (passing notes 
were allowed) produced the higher IC of this corpus (4.05) than of the non-tonal (3.79). In turn, both were 
much higher than the IC (2.46) of the Essen corpus itself, reflecting the greater repetitive predictability of 
that corpus. Consequently the Essen corpus was not usefully predictive in any of the models of non-tonal 
music to which it is conceivably relevant (Tables 3-5). (Essen was not appropriate to compare with the 
polyphonic corpora, since it is a monodic melodic corpus.) 

It is apparent from Table 2 that creating polyphonic compositions from the algorithmic melodic 
corpora dramatically increases their IC, which is expected because the regularities of the serial method are 
partially removed by the re-sequencing of the pitches which occurs in their formation (as indicated 
already). Nevertheless, they still contain regularities, as shown by the capacity of pre-training (on 
themselves) to provide improved models with lower IC. Given the reduction in regularity, and the increase 
in unpredictability (higher IC) of these polyphonic serial corpora, as indicated by our hypotheses they were 
much less powerful than the melodic serial corpora from which they were derived in modeling the Webern 
(Table 3), Schoenberg (Table 4) compositions, and for the relatively high IC piano improvisations (Table 6 
vs Table 5) they were devoid of predictive capacity. We therefore focus the remaining discussion on a 
consideration of the nature of the predictive capacity of the non-tonal melodic corpora. 

As mentioned, it is interesting that not only the non-tonal but also the tonal melodic corpora are 
predictive in some cases; and it is particularly when large melodic intervals are in play that pitch class 
interval contributes to the optimal IDyOM viewpoint combination (as with the improvisations, the 
polyphonic corpora and the non-tonal melodic corpus). We next discuss the two compositions and the two 
improvisation tonality-types in the light of our hypotheses and these two observations; and centered on 
modeling with the melodic monodic corpora, for reasons just given.  

The Webern piece (Table 3) is purely serial. But it contains many short passages which can be 
interpreted in tonal terms, particularly in the light of jazz harmonies such as the X7#9 chords, for example 
F# (midi note 54) /C(60) / Fnatural (65), where X is the missing root D. Nevertheless, its enduring impact 
is of a dynamic non-tonal piece, and so it is consistent with our hypotheses that it is not modeled by Essen, 
nor can the tonal melodic corpus contribute, but the best model is obtained with the algorithmic non-tonal 
melodic corpus. In this case, pitch and pitch interval are predictors, but so too is pitch class interval, 
presumably reflecting the fact that our algorithmic composition method can produce non-uniform 
distributions of both pitch interval and pitch class interval (the latter because of the randomized 
transpositions of the row and its transforms, P, RP, I and RI, and the occurrence of many intervals greater 
than eleven semitones). Even the polyphonic (somewhat re-sequenced) version of this corpus retains some 
predictive capacity. In sum, our non-tonal corpus has contributed a modeling capacity not previously 
achieved.  

Schoenberg’s movement is not serial, but it is by intention non-tonal (though  some phrases can 
readily be viewed in a tonal light). Consistent with our hypotheses, the melodic non-tonal corpus is again 
substantially predictive, and it removes the need for the pitch class interval viewpoint (interval range in the 
voices is modest). The tonal corpus is ineffective.  
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As we move to the piano improvisations (Table 5), we find less rigorously controlled pitch 
structures performed polyphonically and hence with higher IC. Now for the atonal segments, both the non-
tonal and the tonal melodic corpora contribute predictive power, consistent with these facts. This supports 
our suggestion that the contemporary vernacular of ‘atonal’ (our referent description for the improvisers’ 
task) or ‘non-tonal’ music (as we discuss it here) is influenced by serial music and serial ideas, however 
implicitly. On the other hand, the tonal segments are best modeled by an STM only, and pre-training on any 
of the corpora is unhelpful. This also is reasonable in terms of our hypotheses since these are the most tonal 
sections (and they are polyphonic), and of greater flexibility than a tonal composition (as suggested by the 
IC of 4.95 compared with the 2.46 of Essen), and not driven overtly by any serial considerations.  

It is worth considering the influences of pitch class interval further. Table 1 shows that this is 
important within the non-tonal melodic corpus, but not the tonal. This seems also to be true of the Webern 
piece (Table 3: which could be pre-trained on the non-tonal melodic corpus to give the optimal model IC 
4.21). It remained in place for the STM of the Schoenberg, but was not required after pre-training on the 
melodic corpora. It was also useful for modeling the improvisations with polyphonic corpora (Table 6: 
consistent with the greater pitch class interval variability these can contain), but not for models with the 
melodic corpora (Table 5). It is difficult to extract secure generalizations from these particular 
observations, but possible implications are that for strongly serial music, and for highly polyphonic music 
modeled with polyphonic corpora linearized in the way we have used, pitch class interval may be an 
important viewpoint, providing the pitch interval range is large, so that pitch interval and pitch class 
interval provide distinct information.  

Future work might use single voice non-tonal improvisations and compositions to extend the non-
tonal corpus. One could also extract melodic lines from serial/non-tonal compositions (removing harmonic 
components). But even rigorous serial composition disposes of successive members of a row transform 
both horizontally and vertically, and multiple transforms may be used simultaneously, as elaborated earlier. 
Thus a melodic line would not necessarily be closer to the row transforms than the overall sequence of 
notes in a harmonic performance. However, the difficulty in analyzing a harmonic set from a melodic 
(single strand) perspective is that the notes of a chord may not be struck in the order specified by the 
current row transform. Most fundamental is the need for an information-theoretic approach to harmonic 
analysis, to complement the melodic analytic approach. A vectorial harmonic viewpoint provides a possible 
approach. 

In tonal works, the parameters PitchClass and PitchClassInterval could be recoded each time there 
is a modulation, better representing the statistical impact of modulation. By extension, the P-RP-I-RI forms 
could also be separated for IDyOM analysis, and the transpositions also transformed even in the non-tonal 
music. To the extent a piece contains serial structure, this should be most represented by the 
PitchClassInterval parameter, and hence captured by a model using it. 

The positive results with the non-tonal corpora support previous evidence that non-tonal structure 
can be perceptually salient (Dibben, 1994; Durrant et al., 2009; Krumhansl et al., 1987) and will eventually 
permit theoretically-informed cognitive experiments on listeners’ detection of unexpected events, and 
hence tension and resolution (Huron, 2006; Meyer, 1956) in non-tonal contexts. In spite of the 
predominance of tonal music in Western environments, non-tonal influences are active and are of aesthetic 
and perceptual interest.  
The statistical utility of the non-tonal corpora in modeling ecologically valid improvisation also suggests 
that the general statistical modeling approach, and IDyOM in particular, can be useful in the context of 
learning upon first exposure the pitch structures of unfamiliar musics, such as those from different tuning 
systems and cultures. Given that listeners rapidly adapt to novel musical environments (Kessler et al., 
1984), it will be interesting to continue to explore such statistical learning of novel musical styles, using our 
algorithmically generated non-tonal corpora. 
 

NOTES 
 

[1] Correspondence can be addressed to: Prof. Roger Dean, MARCS Institute, Western Sydney University, 
Locked Bag 1797, Penrith, NSW 2751, Australia. roger.dean@westernsydney.edu.au.  
 
[2] The IDyOM software is available here: https://code.soundsoftware.ac.uk/projects/idyom-project  
 

mailto:roger.dean@westernsydney.edu.au
https://code.soundsoftware.ac.uk/projects/idyom-project
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[3] The non-tonal corpus benefited very slightly from pre-training on the tonal corpus (pieces 7-12) but this 
effect disappeared with pre-training on the full tonal melodic corpus.
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