Algorithmically-generated Corpora that use Serial Compositional Principles Can Contribute to the Modeling of Sequential Pitch Structure in Non-tonal Music

Roger Thornton Dean, Marcus Thomas Pearce

Abstract


We investigate whether pitch sequences in non-tonal music can be modeled by an information-theoretic approach using algorithmically-generated melodic sequences, made according to 12-tone serial principles, as the training corpus. This is potentially useful, because symbolic corpora of non-tonal music are not readily available. A non-tonal corpus of serially-composed melodies was constructed algorithmically using classic principles of 12-tone music, including prime, inversion, retrograde and retrograde inversion transforms. A similar algorithm generated a tonal melodic corpus of tonal transformations, in each case based on a novel tonal melody and expressed in alternating major keys. A cognitive model of auditory expectation (IDyOM) was used first to analyze the sequential pitch structure of the corpora, in some cases with pre-training on established tonal folk-song corpora (Essen, Schaffrath, 1995). The two algorithmic corpora can be distinguished in terms of their information content, and they were quite different from random corpora and from the folk-song corpus. We then demonstrate that the algorithmic serial corpora can assist modeling of canonical non-tonal compositions by Webern and Schoenberg, and also non-tonal segments of improvisations by skilled musicians. Separately, we developed the process of algorithmic melody composition into a software system (the Serial Collaborator) capable of generating multi-stranded serial keyboard music. Corpora of such keyboard compositions based either on the non-tonal or the tonal melodic corpora were generated and assessed for their information-theoretic modeling properties.

Keywords


information content; IDyOM; non-tonal; serial music; improvisation

Full Text:

PDF HTML


DOI: http://dx.doi.org/10.18061/emr.v11i1.4900

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Roger Thornton Dean, Marcus Thomas Pearce

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 


Beginning with Volume 7, No 3-4 (2012), Empirical Musicology Review is published under a Creative Commons Attribution-NonCommercial license

Empirical Musicology Review is published by the Ohio State University Libraries. If you encounter problems with the site or have comments to offer, including any access difficulty due to incompatibility with adaptive technology, please contact the web manager, Maureen Walsh.

ISSN: 1559-5749